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ABSTRACT 

 

LONG TERM AND SAFE CLUSTER FLYING  

FOR DISTRIBUTED SPACE SYSTEMS 

 

 

 

Yağlıoğlu, Burak 

Doctor of Philosophy, Aerospace Engineering 

Supervisor: Prof. Dr. Ozan Tekinalp 

 

 

January 2023, 173 pages 

 

To fill the gap between the formation flying and swarm missions, cluster flying is 

introduced with relatively loose geometry constraints and control accuracy 

requirements as well as considering more spacecraft compared to formation flying 

which typically accommodates two spacecraft (a leader and a follower). The problem 

of long-term relative orbit design for and maintenance of spacecraft clusters with 

realistic operational considerations such as safety, station keeping and inter-

spacecraft distance constraints is addressed. Two different methodologies of cluster 

flying design are developed in terms of station keeping and safety objectives. In the 

first methodology, relative orbit configurations are found minimizing deviations 

from reference mean orbit which would maximize the station-keeping objective. In 

second one, relative configurations are found from a reference initial condition by 

minimizing probability of collision, hence maximizing the safety objective, between 

the spacecraft in the cluster which are propagated numerically through a high 

precision orbit propagator. For the design optimization, a derivative free algorithm 

is proposed. Effectiveness of the methodologies is demonstrated through 

simulations. Using this design framework, several configurations can be found by 

exploring the limits of the clusters in terms of spacecraft number, distance bounds 
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and probabilities of collision for long time intervals and various mission 

requirements. To accommodate different types of missions, the problem of radio 

frequency geolocation cluster design is also addressed. For maintenance of the 

clusters, reconfiguration algorithms are developed to minimize total maneuvering 

effort while maximizing station-keeping and ensuring safety objectives.  In the first 

algorithm, sequential cluster configurations are found by minimizing deviations 

from a reference mean orbit for long time intervals and, then, spacecraft are 

associated into new configurations using auction algorithm which minimizes total 

maneuvering effort for whole cluster. For reconfiguration, optimal impulsive 

transfer, model predictive control and nonlinear optimal control methodologies with 

linear time invariant and time variant dynamic models are implemented and 

compared. Finally, another reconfiguration algorithm is proposed by considering 

relative orbital element differences as design variables and its effectiveness is shown 

in terms of significantly improved maneuvering requirements for whole cluster. With 

the developed cluster flying framework, it becomes possible to assess what type of 

clusters are operationally possible or not for a given set of parameters regarding 

constraints, availabilities, capabilities, physical characteristics, navigation 

uncertainties and mission requirements. Therefore, the proposed framework is a 

powerful design and operational analysis tool for maximizing the feasibility and 

mission return of cluster missions. In this manner, different types of clusters with 

specific mission requirements can be designed and evaluated with reasonable or 

small computational demand for long term uninterrupted service and safety in all 

phases of distributed space missions. 

 

Keywords: Spacecraft Cluster Flying, Distributed Space Systems, High Fidelity 

Relative Orbit Design and Analysis, Collision Avoidance, Cluster Reconfiguration 
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ÖZ 

 

DAĞITIK UZAY SİSTEMLERİ İÇİN  

UZUN VADELİ VE GÜVENLİ KÜME UÇUŞU 

 

 

 

Yağlıoğlu, Burak 

Doktora, Havacılık ve Uzay Mühendisliği 

Tez Yöneticisi: Prof. Dr. Ozan Tekinalp 

 

 

Ocak 2023, 173 sayfa 

 

Koluçuşu ve sürü görevleri arasındaki boşluğu doldurmak amacıyla görece daha az 

geometrik kısıt ve kontrol doğruluğu gerektiren ve genellikle lider ve takipçi olmak 

üzere iki uzay aracı olarak düşünülen koluçuşu problemlerine göre daha fazla uzay 

aracı hesaba katılan küme uydu uçuşu tanımlanmıştır. Küme uçuşları için uzun 

vadeli bağıl yörüngelerin tasarımı ve idamesi problemi güvenlik, mevzi koruma ve 

uzay araçları arası mesafe kısıtları gibi gerçekçi operasyonel etmenler ile birlikte ele 

alınmıştır. Küme uydu uçuşu tasarımı kapsamında mevzi koruma ve güvenlik 

amaçlarının ele alındığı iki farklı yöntem geliştirilmiştir. İlk yöntemde, bağıl 

yörünge konfigürasyonları, referans bir ortalama yörünge etrafındaki sapmalar en 

aza indirilerek dolayısıyla mevzi koruma amacı en iyilenerek bulunmaktadır. İkinci 

yöntemde ise bağıl yörünge konfigürasyonları referans bir ilk durumdan yüksek 

doğruluklu sayısal bir yörünge ilerletici vasıtasıyla ilerletilen uzay araçları 

arasındaki çarpışma olasılığı en aza indirilerek dolayısıyla güvenlik amacı en 

iyilenerek bulunmaktadır. Tasarım eniyilemesi için türevsiz bir algoritma 

geliştirilmiştir. Yöntemlerin etkinliği çeşitli benzetimler yoluyla gösterilmiştir. Bu 

tasarım yaklaşımı ile uzun vadeli ve farklı görev gereksinimleri için uzay aracı sayısı, 

mesafe kısıtları ve çarpışma olasılıkları hesaba katılarak çeşitli konfigürasyonların 
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bulunması mümkün kılınmaktadır. Farklı görev gereksinimlerinin değerlendirilmesi 

kapsamında radyo frekanslı yer konumlandırma sistemi için küme uçuşu tasarımı 

problemi ele alınmıştır. Uzay aracı kümelerinin idamesi kapsamında ise mevzi 

koruma amacını eniyilerken ve güvenlik amacını temin ederken toplam manevra 

gereksinimini en aza indiren yeniden kümelenme algoritmaları geliştirilmiştir. İlk 

algoritma ile uzun zaman aralıkları için referans bir ortalama yörünge etrafındaki 

sapmaları en aza indiren ardışık küme konfigürasyonları bulunarak açık artırma ile 

toplam manevra gereksinimini tüm küme için en aza indirecek şekilde uzay 

araçlarının yeni kümelere tahsis edilmesi sağlanmaktadır. Yeniden kümelenme için, 

eniyilenmiş tek ateşlemeli transfer, model öngörülü kontrol ve doğrusal olmayan 

eniyilenmiş kontrol yöntemleri doğrusal-zaman bağımsız ve zaman bağımlı dinamik 

modeller uygulanmış ve karşılaştırılmıştır. Son olarak, bağıl yörünge elemanlarına 

küçük farkların eklenmesi yoluyla başka bir yeniden kümelenme algoritması 

geliştirilmiş ve bu yöntemin etkinliği tüm küme için manevra gereksiniminin kayda 

değer şekilde düşürülmesi yoluyla gösterilmiştir. Geliştirilen küme uçuşu yöntemleri 

ile belirli kısıtlar, imkanlar, kabiliyetler, fiziksel özellikler, seyrüsefer belirsizlikleri 

ve görev gereksinimleri ele alınarak hangi tip kümelerin operasyonel olarak mümkün 

olup olmadığı değerlendirilebilmektedir. Böylelikle, geliştirilen yöntemler küme 

uçuşu görevlerinin elverişliliğini ve bu görevlerinden elde edilecek değeri eniyileyen 

oldukça güçlü tasarım ve operasyonel analiz araçları sağlamaktadır. Bu bağlamda, 

belirli görev gereksinimlerine sahip çeşitli türlerdeki kümeler, dağıtık uzay 

sistemlerinin tüm evrelerinde hatrı sayılır veya düşük hesaplama ihtiyacı ile uzun 

vadeli ve güvenli olarak kesintisiz hizmet verecek şekilde tasarlanarak 

değerlendirebilmektedir. 

Anahtar Kelimeler: Uzay Aracı Küme Uçuşu, Dağıtık Uzay Sistemleri, Yüksek 

Doğrluklu Bağıl Yörünge Tasarımı ve Analizi, Çarpışma Önleme, Yeniden 

Kümelenme 

 



 

 

ix 

 

To Feray and my Little Moon



 

 

x 

 

ACKNOWLEDGEMENTS 

 

I would like to express my deepest gratitude to my supervisor Prof. Dr. Ozan 

Tekinalp for his advice, criticism and continuous support throughout my research. 

I would also like to thank examining committee members Asst. Prof. Dr. Ali Türker 

Kutay, Prof. Dr. Gerhard Wilhelm Weber and Prof. Dr. Kemal Leblebicioğlu for 

their suggestions, comments and support for my research. 

I am deeply thankful to Dr. Egemen İmre for being not only my mentor and coach 

in orbital mechanics but also being a brother who is always there for me.  

The technical discussions with and inputs by Dr. Gürbüz Taha Özdemir, Dr. Burak 

Korkut, Dr. Yunus Emre Arslantaş and Prof. Dr. Hans D. Mittelmann regarding 

optimization methodologies and their implementations are gratefully acknowledged. 

I would like thank all my colleagues from TUBITAK UZAY - Space Technologies 

Research Institute who contributed to my technical and professional development 

between 2011 and 2022. It has been a privilege to be part of this family where I 

learned countless things from. 

I owe the strength and courage in difficult times, which often happens during PhD 

studies, to the endless support of my family. They are the luck of my life and I am 

deeply grateful to be the son of my parents and the brother of my dear sister. 

Last but not least, the special thanks go to my wife Feray for her patience, endless 

support and always reminding me what is really important during my studies. Feray 

and our Mona Luna has been the inspiration and source of joy in writing my thesis. 

 



 

 

xi 

 

TABLE OF CONTENTS 

 

ABSTRACT ............................................................................................................... v 

ÖZ ........................................................................................................................... vii 

ACKNOWLEDGEMENTS ....................................................................................... x 

TABLE OF CONTENTS ......................................................................................... xi 

LIST OF TABLES .................................................................................................. xii 

LIST OF FIGURES ............................................................................................... xiv 

LIST OF ABBREVIATIONS .................................................................................. xx 

LIST OF SYMBOLS ............................................................................................ xxii 

CHAPTERS 

1 INTRODUCTION ............................................................................................. 1 

2 HIGH FIDELITY MODELING AND ANALYSIS OF ABSOLUTE AND 

RELATIVE ORBITAL MOTION ............................................................................. 9 

3 CLUSTER FLYING DESIGN, EVALUATION AND OPTIMIZATION ..... 51 

4 CLUSTER FLYING MAXIMIZING STATION KEEPING OBJECTIVE ... 83 

5 CLUSTER FLYING MAXIMIZING SAFETY OBJECTIVE ...................... 105 

6 CLUSTER FLYING MINIMIZING DILUTION OF PRECISION .............. 115 

7 CLUSTER RECONFIGURATION WITH CONTROL CONSTRAINTS ... 129 

8 CONCLUSION .............................................................................................. 153 

REFERENCES ...................................................................................................... 157 

APPENDICES ....................................................................................................... 165 

CURRICULUM VITAE ........................................................................................ 171 

 



 

 

xii 

 

 

LIST OF TABLES 

TABLES 

Table 2.1 Methods and their characterization for absolute orbit computation ........ 33 

Table 2.2 Comparison of numerical methods .......................................................... 38 

Table 2.3 Comparison of numerically propagated states and real flight data ......... 38 

Table 2.4 Experimental setup for numerically propagated relative motion with 

different force model configurations ....................................................................... 43 

Table 3.1 Validation of PoC Calculations ............................................................... 62 

Table 3.2 Comparison of Cluster Flying Aspects and Associated Requirements ... 64 

Table 3.3 Scaling Laws for Guidance, Navigation and Control Parameters for 

Formation Flying (Gill, 2011). ................................................................................ 69 

Table 4.1 Cluster Flying Design Formulation with Station-Keeping Objective ..... 83 

Table 4.2 Cluster Flying Design Formulation for Heterogeneous Systems ............ 98 

Table 5.1 Cluster Flying Design Formulation with Safety Objective ................... 105 

Table 6.1 RFGL Cluster Design Formulation with 3 Spacecraft and DOP Objective

 ............................................................................................................................... 120 

Table 6.2 RFGL Cluster Design Results with 3 Spacecraft for Various Durations

 ............................................................................................................................... 123 

Table 6.3 RFGL Cluster Design Formulation with 4 spacecraft and DOP Objective

 ............................................................................................................................... 124 

Table 6.4 RFGL Cluster Design Results with 4 Spacecraft for Various Durations

 ............................................................................................................................... 127 

Table 7.1 Sample ∆V Map for a Reconfiguration of 5 Spacecraft Cluster ........... 132 

Table 7.2 Reconfiguration Problem with the Objective of Minimizing Total 

Maneuvering for a Cluster of 5 Spacecraft ............................................................ 132 

Table 7.3 ∆V Map for a Reconfiguration of 5 Spacecraft Cluster with OIT ........ 134 

Table 7.4 Orbital Transfer Formulation with LTI System MPC ........................... 137 

Table 7.5 ∆V Map for the Reconfiguration of 5 Spacecraft Cluster with MPC ... 138 



 

 

xiii 

 

Table 7.6 Orbital Transfer Formulation with LTI System NOC .......................... 141 

Table 7.7 ∆V Map for the Reconfiguration of 5 Spacecraft Cluster with LTI NOC

 ............................................................................................................................... 141 

Table 7.8 Orbital Transfer Formulation with LTV System NOC ......................... 143 

Table 7.9 ∆V Map for the Reconfiguration of 5 Spacecraft Cluster with LTV NOC

 ............................................................................................................................... 144 

Table 7.10 Summary of Reconfiguration Results for 5 Spacecraft Cluster .......... 145 

Table 7.11 Propellant Budget for Spacecraft Reconfiguration ............................. 146 

Table 7.12 Reconfiguration Problem with Relative Orbital Element Differences as 

Design Variables ................................................................................................... 148 

Table 7.13 Summary of Reconfiguration Results for 5 Spacecraft Cluster with 

Relative Orbital Element Differences as Design Variable.................................... 150 

Table 7.14 Propellant Budget for Spacecraft Reconfiguration with Relative Orbital 

Element Differences as Design Variables ............................................................. 150 



 

 

xiv 

 

LIST OF FIGURES 

FIGURES  

Figure 1.1. Categorization of Distributed Space Missions in terms of Distance and 

Control Accuracy ....................................................................................................... 1 

Figure 1.2. Categorization of Distributed Space Missions in terms of Homogeneity

 ................................................................................................................................... 2 

Figure 2.1. Representation of Earth Centered Inertial Frame with unit vectors I, J, K 

for X, Y, Z directions respectively where X points at Vernal Equinox . (Vallado, 

2013) ........................................................................................................................ 10 

Figure 2.2. Representation of precession and nutation effects on the spin axis due to 

perturbation forces on the Earth. (Vallado, 2013) ................................................... 11 

Figure 2.3. Simplified Representation of Earth Centered Earth Fixed Frame with 

respect to Earth Centered Inertial Frame ................................................................. 12 

Figure 2.4. RTN frame centered in the reference spacecraft ................................... 14 

Figure 2.5. Two-dimensional orbital elements with respect to inertial frame ......... 15 

Figure 2.6. Three-dimensional orbital elements with respect to inertial frame ....... 16 

Figure 2.7. Representation of PQW frame .............................................................. 18 

Figure 2.8. Comparison of the perturbing accelerations affecting satellites at various 

altitudes. Indicated are the effects of Earth’s gravitation (central term GM and 

harmonic term Jn,n), the perturbation from point masses (Moon, Sun, Venus) as well 

as the influence of radiation pressure and drag. (Montenbruck, Orbital Mechanics, 

2009) ........................................................................................................................ 20 

Figure 2.9. Zonal, tesseral and sectorial harmonics ................................................ 21 

Figure 2.10. Representation of dual cone shadow model with penumbra and umbra

 ................................................................................................................................. 24 

Figure 2.11. Change of orbital elements over time due to perturbations ................ 27 

Figure 2.12. Two Line Element (TLE) format and its description (Montenbruck, 

Orbital Mechanics, 2009) ........................................................................................ 28 

Figure 2.13. Position error of SGP4 model for a 3-day fit ...................................... 29 



 

 

xv 

 

Figure 2.14. Osculating and mean elements with respect to an observation .......... 31 

Figure 2.15. Osculating and mean semimajor axis and eccentricity for a sample one-

year simulation (Zhong & Gurfil, 2013) ................................................................. 32 

Figure 2.16. Energy plot of RK4 integrator for two body force field ..................... 35 

Figure 2.17. Leap frog representation ..................................................................... 36 

Figure 2.18. A composite symplectic integration scheme ...................................... 36 

Figure 2.19. Implemented symplectic integration scheme ..................................... 37 

Figure 2.20. Energy plot of symplectic integrator for two body force field ........... 37 

Figure 2.21. Relative motion error of J2 only model for 30 days propagation ....... 44 

Figure 2.22. Relative motion error ratio of J2 only model for 30 days propagation

 ................................................................................................................................. 45 

Figure 2.23. Relative motion error of relative TLEs for 30 days propagation ....... 48 

Figure 2.24. Relative motion error ratio of relative TLEs for 30 days propagation 49 

Figure 3.1. Cluster Flying Design and Evaluation Framework .............................. 51 

Figure 3.2. Numerical Propagation of Relative Motion and Determination of 

Relative Distances and Probabilities of Collision ................................................... 52 

Figure 3.3. Analytical Propagation (SGP4) of Relative Motion and Determination of 

Relative Distances ................................................................................................... 54 

Figure 3.4. Representation and comparison of UT by (Wan & van der Merwe, 2001)

 ................................................................................................................................. 57 

Figure 3.5. Evolution of mean position error due to covariance with UT .............. 59 

Figure 3.6. Evolution of position standard deviation with UT (black curve is the norm 

of position standard deviation; blue, red and green are the position standard deviation 

in radial (R), along-track (T) and cross-track (N) directions respectively) ............ 59 

Figure 3.7. Representation of Conjunction Plane (B-plane perpendicular to ∆v), 

Combined and Projected Covariance, 𝑃𝐵, and Conjunction Area 𝐴𝑐. (Krag, et al., 

2016) ....................................................................................................................... 61 

Figure 3.8. Screening Methods and Associated Thresholds at ESOC (Funke, et al., 

2018) ....................................................................................................................... 63 



 

 

xvi 

 

Figure 3.9. In-plane (Radial and Along-track) and out of plane (Radial and Cross-

track) relative motion based on relative eccentricity and inclination vectors 

(D'Amico & Montenbruck, 2006). .......................................................................... 66 

Figure 3.10. Out of plane (Radial and Cross-track, Left) and three dimensional (right) 

representations of relative motion with uncertainty of chief orbit where a minimum 

distance is ensured in RN plane. (Mueller, Griesemer, & Thomas, 2013) .............. 68 

Figure 3.11. Relative Effectiveness of the Design Variables for 5 Spacecraft over a 

Design Space of 1000 Samples. Each row indicates the specific spacecraft, while the 

column indicates relative orbital element, 𝛥𝑒, 𝛥𝑖, 𝛥Ω and 𝛥𝜔 respectively. .......... 72 

Figure 3.12. Optimization Algorithm Flowchart. .................................................... 73 

Figure 3.13. Monte Carlo Implementation in Computers. ...................................... 74 

Figure 3.14. Latin Hypercube Sampling Implementation. ...................................... 76 

Figure 3.15. LHS and Monte Carlo Sampling Example for Two-Dimensional Space.

 ................................................................................................................................. 77 

Figure 3.16. Number of Feasible Solutions over Sample Size with respect to Sample 

Size. ......................................................................................................................... 79 

Figure 3.17. Feasible Solutions (red points) from 1000 Samples in the 1st Iteration of 

Design Space Exploration. ...................................................................................... 80 

Figure 3.18. Feasible Solutions (red points) from 1000 Samples in the 2nd Iteration 

of Design Space Exploration. .................................................................................. 81 

Figure 4.1. Feasible Solutions (red points) from 2000 Samples for 5-Spacecraft 

Cluster and 5 Day-Duration. .................................................................................... 85 

Figure 4.2. Cluster Flying 5 Day-Result for 5 Spacecraft with Station-Keeping 

Objective. ................................................................................................................. 86 

Figure 4.3. Along-Track - Radial Distances of 5 Day-Result for 5 Spacecraft Cluster 

with Station-Keeping Objective. ............................................................................. 87 

Figure 4.4. Along-Track – Cross-Track Distances of 5 Day-Result for 5 Spacecraft 

Cluster with Station-Keeping Objective. ................................................................. 88 

Figure 4.5. Cross-Track - Radial Distances of 5 Day-Result for 5 Spacecraft Cluster 

with Station-Keeping Objective. ............................................................................. 88 



 

 

xvii 

 

Figure 4.6. Radial – Along-Track – Cross-Track Distances of 5 Day-Result for 5 

Spacecraft Cluster with Station-Keeping Objective. .............................................. 89 

Figure 4.7. Feasible Solutions (red points) from 4000 Samples for 10-Spacecraft 

Cluster and 10 Day-Duration. ................................................................................. 90 

Figure 4.8. Cluster Flying 10 Day-Result for 10 Spacecraft with Station-Keeping 

Objective. ................................................................................................................ 91 

Figure 4.9. Along-Track - Radial Distances of 10 Day-Result for 10 Spacecraft 

Cluster with Station-Keeping Objective. ................................................................ 92 

Figure 4.10. Along-Track – Cross-Track Distances of 10 Day-Result for 10 

Spacecraft Cluster with Station-Keeping Objective. .............................................. 92 

Figure 4.11. Cross-Track - Radial Distances of 10 Day-Result for 10 Spacecraft 

Cluster with Station-Keeping Objective. ................................................................ 93 

Figure 4.12. Radial – Along-Track – Cross-Track Distances of 10 Day-Result for 10 

Spacecraft Cluster with Station-Keeping Objective. .............................................. 93 

Figure 4.13. Spacecraft Number, 𝑁 vs. Percentage of Number of Solutions for fixed 

Duration, 𝑇𝑚𝑎𝑥. ..................................................................................................... 94 

Figure 4.14. Duration, 𝑇𝑚𝑎𝑥 vs. Percentage of Number of Solutions for fixed 

Spacecraft Number, 𝑁. ............................................................................................ 95 

Figure 4.15. Spacecraft Number, 𝑁 vs. Objective Function Value for fixed Duration, 

𝑇𝑚𝑎𝑥. ..................................................................................................................... 96 

Figure 4.16. Duration, 𝑇𝑚𝑎𝑥 vs. Objective Function Value for fixed Spacecraft 

Number, 𝑁. ............................................................................................................. 96 

Figure 4.17. 20 Day Propagation Result for 15-day 5 Spacecraft Cluster Flying with 

Station-Keeping Objective. ..................................................................................... 97 

Figure 4.18. Feasible Solutions (red points) from 3000 Samples for 5-Spacecraft 

Heterogeneous Cluster and 20 Day-Duration. ........................................................ 99 

Figure 4.19. Cluster Flying 20 Day-Result for 5 Spacecraft Heterogeneous System 

with Station-Keeping Objective. ........................................................................... 100 



 

 

xviii 

 

Figure 4.20. Along-Track - Radial Distances of 5 Day-Result for 5 Spacecraft 

Heterogeneous Cluster with Station-Keeping Objective. ...................................... 101 

Figure 4.21. Along-Track – Cross-Track Distances of 5 Day-Result for 5 Spacecraft 

Heterogeneous Cluster with Station-Keeping Objective. ...................................... 102 

Figure 4.22. Cross-Track - Radial Distances of 5 Day-Result for 5 Spacecraft 

Heterogeneous Cluster with Station-Keeping Objective. ...................................... 102 

Figure 4.23. Radial – Along-Track – Cross-Track Distances of 5 Day-Result for 5 

Spacecraft Heterogeneous Cluster with Station-Keeping Objective. .................... 103 

Figure 5.1. Cluster Flying 3 Day-Result for 5 Spacecraft Heterogeneous System with 

Safety Objective. ................................................................................................... 107 

Figure 5.2. Along-Track - Radial Distances of 3 Day-Result for 5 Spacecraft 

Heterogeneous Cluster with Safety Objective. ...................................................... 108 

Figure 5.3. Along-Track – Cross-Track Distances of 3 Day-Result for 5 Spacecraft 

Heterogeneous Cluster with Safety Objective. ...................................................... 109 

Figure 5.4. Cross-Track - Radial Distances of 3 Day-Result for 5 Spacecraft 

Heterogeneous Cluster with Safety Objective. ...................................................... 109 

Figure 5.5. Radial – Along-Track – Cross-Track Distances of 3 Day-Result for 5 

Spacecraft Heterogeneous Cluster with Safety Objective. .................................... 110 

Figure 5.6. Probabilities of Collision Between 2 Spacecraft for 10 Combinations 

during the Simulation Duration. (Red line indicates the probability of 1x10-4.) ... 111 

Figure 5.7. Conjunction Between Spacecraft 1 and 5 where PoC is around 2x10-3.

 ............................................................................................................................... 112 

Figure 6.1. The Geometry of TDOA Geolocation ................................................ 116 

Figure 6.2. Feasible Solutions (red points) from 5000 Samples for 3-Spacecraft 

RFGL Cluster and 28 Day-Duration. .................................................................... 121 

Figure 6.3. Cluster Flying 28 Day-Result for 3 Spacecraft with DOP objective. . 122 

Figure 6.4. RFGL Cluster Geometry of 3 Spacecraft with Respect to Emitter. .... 123 

Figure 6.5. Feasible Solutions (red points) from 5000 Samples for 4-Spacecraft 

RFGL Cluster and 28 Day-Duration. .................................................................... 125 

Figure 6.6. Cluster Flying 28 Day-Result for 4 Spacecraft with DOP objective. . 126 



 

 

xix 

 

Figure 6.7. RFGL Cluster Geometry of 4 Spacecraft with Respect to Emitter. ... 127 

Figure 7.1. Overview of Sequential Cluster Design and Reconfiguration............ 130 

Figure 7.2. Implementation of Sequential Cluster Design and Reconfiguration. . 131 

Figure 7.3. Design Space Exploration Results for 5 Spacecraft Cluster 

Reconfiguration. .................................................................................................... 133 

Figure 7.4. Cluster Flying 3 Day-Result for 5 Spacecraft with Minimum Impulsive 

Maneuvering Objective. ........................................................................................ 135 

Figure 7.5. Relative Trajectory of MPC Reconfiguration 𝑅𝑂1, 𝑡0 → 𝑅𝑂1, 𝑡1. ... 138 

Figure 7.6. Control History of MPC Reconfiguration 𝑅𝑂1, 𝑡0 → 𝑅𝑂1, 𝑡1. ......... 139 

Figure 7.7. Relative Trajectory of LTI NOC Reconfiguration 𝑅𝑂1, 𝑡0 → 𝑅𝑂1, 𝑡1 

(Left) and 𝑅𝑂3, 𝑡0 → 𝑅𝑂3, 𝑡1 (Right).................................................................. 142 

Figure 7.8. Implementation of Sequential Cluster Design and Reconfiguration with 

Relative Orbital Differences ................................................................................. 147 

Figure 7.9. Cluster Flying 3 Day-Result for 5 Spacecraft with Relative Orbital 

Element Differences as Design Variable. ............................................................. 149 

Figure A.1. The geometry of two-impulse optimal transfer between non-coplanar 

circular and elliptical orbits. (Eagle, 2021) ........................................................... 165 

 



 

 

xx 

LIST OF ABBREVIATIONS 

 

ABBREVIATIONS 

CDF: Cumulative Distribution Function 

CSpOC: Combined Space Operations Center 

DOP: Dilution of Precision 

ECI: Earth Centered Inertial 

ECEF: Earth Centered Earth Fixed 

ESOC: European Space Operations Center 

FDOA: Frequency Difference of Arrival 

FoV: Field of View 

HCW: Hill-Clohess-Wiltshire Equations 

LEO: Low Earth Orbit 

LHS: Latin Hypercube Sampling 

LVLH: Local Vertical Local Horizontal 

LTAN: Local Time of the Ascending Node 

LTI: Linear Time Invariant 

LTV: Linear Time Variant 

MPC: Model Predictive Control 

MPS: Monopropellant Propulsion System 

NOC: Nonlinear Optimal Control 

OIT: Optimal Impulsive Transfer 



 

 

xxi 

PDF: Probability Density Function 

PoC: Probability of Collision 

qns: Quasi Non-Singular 

RAAN: Right Ascension of the Ascending Node 

RF: Radio Frequency 

RFGL: Radio Frequency Geolocation 

RK4: Runge-Kutta fourth-order method 

RTN: Radial, Transversal and Normal 

SGP4: Simplified General Perturbations Model No. 4 

SSO: Sun Synchronous Orbit 

STM: State Transition Matrix 

TDOA: Time Difference of Arrival 

TEME: True Equator Mean Equinox 

TLE: Two-Line Elements 

UT: Unscented Transform 

 



 

 

xxii 

LIST OF SYMBOLS 

 

SYMBOLS 

𝜇: Gravitational Constant 

𝑅⨁: Radius of Earth 

𝐽2: Constant of Earth’s Oblateness 

𝑎: Semi-major Axis 

𝑒: Eccentricity 

𝑖: Inclination 

Ω: Right Ascension of Ascending Node 

ω: Argument of Perigee 

𝜈: True Anomaly 

𝑀: Mean Anomaly 

𝐸: Eccentric Anomaly 

𝑛: Mean Motion 

휀: Orbital Energy 

𝑟 : Position Vector 

𝑟𝐴 : Position Vector in Frame A 

ℛ𝐴: Rotation Matrix about Axis A 

𝛽𝐵
𝐴: Transformation Matrix from Frame 𝐴 to Frame 𝐵 

𝑚𝑖: Mass of Spacecraft  

𝐶𝑟: Solar Radiation Pressure Coefficient 



 

 

xxiii 

𝐴𝑟: Solar Radiation Pressure Area 

𝜌: Atmospheric Density 

𝐶𝑑: Drag Coefficient 

𝐴𝑑: Drag Area 

𝛽∗: Drag Parameter for SGP4 Theory 

𝛼𝑖,𝑗
𝐴 : Orbital Element Vector of Spacecraft 𝑖 at Instant 𝑗 of Type 𝐴 

∆𝛼𝑖
𝐴: Relative Orbital Element Vector of Spacecraft 𝑖 of Type 𝐴 

Φ: State Transition Matrix 

Γ: Control Input Matrix 

𝐶𝑘
𝑁: Number of 𝑘 combinations of the set that has 𝑁 elements 

𝑋𝑖,𝑗
𝐴 : Cartesian State Vector of Spacecraft 𝑖 at Instant 𝑗 Expressed in Frame 𝐴 

∆𝑋𝑛,𝑗
𝐴 : Relative Distance Vector of Combination 𝑛 at Instant 𝑗 Expressed in Frame 𝐴 

𝑃𝑖,𝑗: Covariance Matrix of Spacecraft 𝑖 at Instant 𝑗 

𝑃𝑐: Probability of Collision 

𝑃𝑜𝐶𝑛,𝑗: Probability of Collision of Combination 𝑛 at Instant 𝑗 

𝑟𝑐: Radius of Conjunction Area 

𝜎𝑖: Standard Deviation in Direction 𝑖 

𝜌𝑖: Design Variables for Spacecraft 𝑖 

𝑅𝑂𝑖,𝑡𝑗: 𝑖𝑡ℎ Relative Orbit at Time Interval 𝑡𝑗 

∆𝑉𝑖,𝑗
𝐴 : Delta Velocity Vector of Spacecraft 𝑖 at Instant 𝑗 Expressed in Direction 𝐴 

 





 

 

1 

 

CHAPTER 1  

1 INTRODUCTION  

Distributed space systems are utilized when there is a need for common observation 

of a region with multiple sensors, parallel observation of multiple regions, improved 

coverage, revisit or response time over a region of interest, realization of 

interferometry missions with long baselines, spacecraft networks and/or improved 

understanding and resolution through sensor fusion. Distributed space systems not 

only realize such needs but also offer flexibility (scalability, evolvability, 

maintainability, adaptability, etc.) and robustness (survivability, fault tolerance, 

reliability, etc.). Missions that utilize distributed space systems can be categorized 

with respect to inter-spacecraft distances and required control accuracy (Gill, 2011) 

which is illustrated in Figure 1.1. 

 

Figure 1.1. Categorization of Distributed Space Missions in terms of Distance and 

Control Accuracy 
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Here, local systems with separations between the spacecraft of a few meters can be 

referred as rendezvous and docking; regional systems with separations from a few 

10 meters to several hundreds of kilometers can be referred as formation flying and 

global systems with separations of more than a thousand kilometers can be referred 

as constellations. The control accuracy requirements are the most stringent for 

rendezvous and docking where the inter-spacecraft distances are lowest. For 

formation flying, the mission objectives drive the requirements on the control 

accuracy. For instance, the control accuracy demand becomes high for a mission 

with tight geometry constraints. However, missions that would not require such tight 

geometry constraints can be handled with relatively less control accuracy. In 

addition, swarm missions with thousands of spacecraft can be considered to support 

collecting in-situ data with local, regional and global coverage. The drawback of 

swarms would be the limited control accuracy for individual spacecraft because of 

the limited budget per spacecraft for such a system.  

Another categorization of distributed space systems can be in terms homogeneity of 

the system. Here, a distributed space system can be called homogeneous if all the 

spacecraft are identical in a system and heterogeneous if all the spacecraft are totally 

different. A third category can be named as hybrid with combination of identical and 

totally different spacecraft. These categories are illustrated in  Figure 1.2.  

 

Figure 1.2. Categorization of Distributed Space Missions in terms of Homogeneity 

The differences between systems may occur in terms of physical characteristics such 

as mass, area, shape, ballistic coefficient, inertia, reflectivity parameters, etc.; 

capabilities such as sensor and actuator performances, propellant mass, etc. and 
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availabilities due to mission requirements, failures, limited resources, etc. In this 

study, mainly physical characteristics are referred when considering heterogeneous 

systems. 

To fill the gap between the formation flying and swarm missions, cluster flying is 

introduced with relatively loose geometry constraints and control accuracy 

requirements and more spacecraft are considered compared to formation flying 

which typically accommodates two spacecraft (a leader and a follower). However, 

as it will be explained in detail, there are several considerations to be addressed for 

cluster flying. Mainly, passively safe relative orbit configurations to support long-

duration semi-autonomous operations shall be provided. This would also require 

incorporating realistic operational constraints such as station-keeping, collision or 

evaporation avoidance as well as mission/spacecraft specific parameters, constraints, 

capabilities and availabilities. Finally, sustaining a system with specific number of 

spacecraft for long term requires not only designing cluster configurations but also 

reconfiguration in the case of violation of a safety and/or distance constraints. 

Therefore, propellant optimal configuration and reconfiguration solutions are also 

vital for the feasibility and mission return of such cluster missions. 

In this manner, it is aimed in this thesis to propose a set of algorithms that enable the 

long-term station keeping and reconfiguration of distance bounded multi-spacecraft 

clusters under realistic operational considerations. These considerations include 

safety and availability as well as spacecraft physical characteristics, capabilities, 

navigation uncertainties and high-fidelity orbital dynamics. 

1.1 Literature Survey of Cluster Flying for Distributed Space Missions 

(Brown & Eremenko, 2006) discusses that distributed space systems and spacecraft 

clusters have several advantages when compared to missions carried out using single 

spacecraft in terms of flexibility and robustness which would increase the net value 

or mission return. (Selva, et al., 2017) provides an extensive summary and 
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assessment of modern concepts and key enabling technologies of distributed 

functionality in space. One of the important factors for these distributed space 

systems is the design of relative orbit configurations for a cluster of spacecraft. For 

the case of cluster flying with a heterogeneously distributed system, it can be 

considered that a number of spacecraft, differing in platform characteristics, fly 

closely in formation with relatively loose geometry constraints (Yaglioglu B. , 2011). 

In this manner, there are several aspects to consider for the realization of cluster 

flying in terms of safety, and inter-spacecraft communication availability in addition 

to the regular station keeping and mission operations constraints (Yaglioglu & Wang, 

2011). 

So far, design and control of relative motion are widely studied in academia and 

industry with an emphasis on station keeping and/or reconfiguration objectives and 

constraints. Among these, (D'Amico & Montenbruck, 2006) provided a basis for 

relative orbit design with safety considerations by developing the parallel separation 

of relative E/I vectors method for Low Earth Orbit (LEO) close proximity formation 

flying missions. (Yaglioglu & Wang, 2011) and (Wang & Nakasuka, 2012) adopt 

the relative E/I vectors method to propose an intuitive cluster flying design method 

with passive relative orbits for fractionated spacecraft incorporating visibility and 

safety constraints. (Lim, Jung, & Bang, 2018) also uses this method to achieve safe 

formation keeping. (Hur-Diaz & O’Connor, 2014) discusses the application of 

cluster flying for fractionated space systems. Guidance problems with safety 

objective are also studied by (Wen, Zhang, & Gurfil, 2015) and (Pengfei, Xiaoqian, 

& Yong, 2019) for clusters especially after deployment from launchers. However, 

(Scharf, Hadaegh, Y., & Ploen, 2003) noted that the usefulness of passive relative 

orbits depends on the fidelity of the model used in their design because minimal 

disturbances prolonged over the mission lifetime affect formation keeping, and thus 

hinder the functions enabled by precise relative positioning. In addition, (Campbell, 

2005) introduces a quantitative safety measure based on contours of probability, 

defined using state uncertainty ellipsoids, which are used to monitor and predict 

potential collisions over time. 
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Also, the relative dynamics, guidance, navigation, coordination, control, 

reconfiguration and optimization issues has been well studied in the literature by 

(Tillerson, Inalhan, & How, 2002), (Scharf, Hadaegh, Y., & Ploen, 2003), (Schaub 

& Junkins, 2003), (Scharf, Hadaegh F., & Ploen, 2004), (Alfriend & Yan, Evaluation 

and Comparison of Relative Motion Theories, 2005), (Alfriend, Vadali, Gurfil, How, 

& Breger, 2010), (Mueller, Griesemer, & Thomas, 2013), (Morgan, Chung, & 

Hadaegh, Model Predictive Control of Swarms of Spacecraft Using Sequential 

Convex Programming, 2014), (Morgan, Subramanian, P., Chung, & Hadaegh, 2016) 

and (Sullivan, Grimberg, & D'Amico, 2017). This wide literature provides an insight 

on the formulation of the relative dynamics, definition of constraints and 

linearization techniques. In addition to these, (Wang, Mengali, Quarta, & Yuan, 

2017) and (Zhang, Dang, Fan, & Wang, 2017) introduce useful tools to calculate 

minimum and maximum relative distances effectively. (Paek, Kim, & de Weck, 

2019) presents a framework for designing reconfigurable satellite constellations 

based on sampling and derivative free optimization techniques. A recent 

methodological development of cluster control algorithms supporting the various use 

cases of the mission with an emphasis on the algorithm’s structure, information flow, 

and implementation is presented by (Edlerman & Gurfil, 2019). Finally, the latest 

developments in robust and safe cluster design and control applications with 

perturbed near-circular orbits are provided by (Koeing & D’Amico, 2018).  

This important literature guides the development of an infrastructure for cluster 

flying design; however, a wholistic approach utilizing these building blocks with 

realistic considerations for long term cluster flying design and maintenance is still to 

be developed and/or advanced.  

1.2 Thesis Overview 

To provide an insight of this thesis work, the posed research questions, original 

contributions and thesis organization are summarized in following subchapters. 
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1.2.1 Research Questions 

While conducting research on passively safe relative orbit configurations to support 

long-duration semi-autonomous spacecraft cluster operations, several research 

questions are posed: 

• How to distribute multiple spacecraft into passively safe relative orbits? 

• Are passively safe relative orbit configurations over long time intervals 

(~days) possible? 

• How to incorporate the station-keeping and distance constraints as well as 

navigation uncertainties? 

• How to distribute multiple spacecraft to sequential long-term relative orbits? 

• How to transfer a cluster of spacecraft from the current configuration to the 

next one minimizing maneuver effort? 

1.2.2 Original Contributions 

The presented work in this thesis is aimed at improving the time validity analysis of 

cluster configurations and the fidelity of cluster flying design by incorporating 

realistic orbital dynamics, spacecraft parameters and navigation uncertainties as well 

as operational considerations. In terms of realistic dynamics, a high-fidelity orbit 

propagation is utilized to harness the natural dynamics in benefit of cluster flying 

design to reduce unnecessary control and therefore propulsion activities. In addition, 

heterogeneous systems with differences in spacecraft parameters and their effects on 

the dynamics of relative motion are considered inherently while designing cluster 

configurations. In terms of operational considerations and constraints, safety is 

treated not only as a constraint but another objective in addition to the traditional 

station keeping objectives and distance constraints. While addressing these, one 

method is developed to define general boundaries of a cluster with relatively less 

computational demand. On the other hand, another method is developed to maximize 

the safety for a cluster in the existence of navigation uncertainties with high fidelity 
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and, therefore, relatively higher computational demand. However, both methods can 

be used to design cluster configurations and assess their time validity (until control 

actions are necessary) whether in a design or operations phase of a cluster mission. 

To elaborate more, the objective function in first method is defined such that the 

deviation from a reference orbit for each spacecraft within the cluster is minimized, 

hence maximizing the station-keeping objective. In the second one, state or 

navigation uncertainties are also considered and the probability of collision between 

the spacecraft is minimized with the aim of maximizing the safety objective. For 

both approaches, minimum and maximum bounds on distances between the 

spacecraft and on the design variables (relative orbital elements) are defined by 

considering realistic mission and system specific parameters such as minimum and 

maximum ranges. In addition, different physical characteristics are introduced 

through drag parameters and the radiation pressure parameters in order to simulate a 

heterogeneous system. Finally, these two approaches are formulated and solved 

providing passively safe long-term operations which would not require any 

reconfiguration over a specific time interval therefore maximizing the mission return 

without any maneuver operation.  

For cases when the time validity of a cluster is exceeded, i.e. the constraints are 

violated, the reconfiguration solutions are also found. Here, sequential cluster 

configurations are found by minimizing the total maneuvering effort for whole 

cluster while bounding deviations from a reference mean orbit for long time 

intervals. The optimal reconfiguration is investigated via model predictive control as 

well as nonlinear optimal control.  The minimization of total maneuvering effort is 

realized through generating delta-V maps and associating relative orbits on the 

current configuration to the next one using an auction algorithm. Finally, to reduce 

total maneuvering effort further, reconfigurations are also found by slightly 

modifying individual relative orbits that still satisfies the cluster flying requirements. 

To sum up original contributions can be summarized as follows: 

• Utilization of a high-fidelity orbit propagation for cluster flying design, 
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• Consideration of heterogeneous systems with different physical parameters, 

• Cluster flying design methodology supporting time validity analyses, 

• Cluster flying design methodology identifying general time-space boundaries 

with less computational demand, 

• Cluster flying design methodology with consideration of safety as an 

objective through minimizing probability of collision, 

• Reconfiguration algorithm that supports cluster time-space validity through 

sequential design of clusters, 

• Reconfiguration algorithm that considers spacecraft capabilities while 

minimizing total maneuvering effort for whole cluster. 

1.2.3 Thesis Organization 

A general guide to the cluster flying design and evaluation methodologies which are 

developed in this thesis is provided here. In Chapter 2, the high-fidelity modeling 

and analysis of absolute and relative motion are provided. This chapter serves as the 

introduction and validation of orbital dynamics models that are utilized for the cluster 

flying design and evaluation. In Chapter 3, the formulations and algorithms used in 

this thesis are introduced. First, the methodologies and related assumptions for 

relative orbit design and propagation as well as uncertainty propagation and 

calculation of collision probability are summarized. Then, the constraints, objective 

functions and design variables are defined. Finally, the methodology and the 

proposed algorithm for the design space exploration and optimization are provided. 

In Chapter 4, Chapter 5 and Chapter 6 cluster flying design cases are introduced with 

their results for maximizing the station keeping and safety objectives as well as 

minimizing dilution of precision respectively. In Chapter 7, reconfiguration 

methodology for spacecraft clusters is introduced. Here, two-impulse optimal 

transfer, model predictive control and nonlinear optimal control strategies are also 

compared. At the end of the thesis, the major outcomes, conclusions and potential 

future work items are summarized. 
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CHAPTER 2  

2 HIGH FIDELITY MODELING AND ANALYSIS OF ABSOLUTE AND 

RELATIVE ORBITAL MOTION 

In this chapter, the construction of a highly accurate absolute orbit and relative orbit 

models are introduced. For predicting orbital motion with high accuracy, it is 

necessary to consider all related aspects which include reference frames and systems, 

instantaneous and long-term orbit representation, perturbation effects, maneuvering 

and propagation of orbits. All these aspects are introduced and explained in the 

following subchapters. 

2.1 Representation and Propagation of Orbital Motion 

2.1.1 Reference Frames and Systems for Orbital Motion 

The representation and derivation of equations of motion for the orbital motion 

require the definition of reference frames and systems. Here, reference frames, 

systems and coordinates can be differentiated as follows: 

• Coordinate System is a mathematical expression for representation where the 

origin and orientation of the axes are defined. 

• Reference Frame is the materialization of a reference system in real world 

where specification of elements and assumptions for realization are defined. 

• Reference System is formed by specification of the reference frame and its 

origin where it consists of the adopted coordinate system, a set of constants, 

models and parameters. 
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For orbital motion, inertial, body fixed and local reference frames can be considered. 

The ones utilized in this thesis are briefly introduced as follows:  

2.1.1.1 Earth Centered Inertial (ECI) Frame 

An inertial frame has a fixed orientation in space and therefore the axes of the 

coordinate system do not rotate. Also, the Newton’s 2nd law is valid in this frame.  In 

this thesis, the assumptions of the inertial frame are defined as follows: 

• Coordinate System: Cartesian 

• Origin: Center of mass of the Earth 

• Orientation of Axes: Fixed inertial direction along the intersection of the 

Earth’s equatorial plane and the ecliptic. X axis points at Vernal Equinox at 

1 January 2000, 11:58:55.816 [UTC], Z axis points along the spin axis of 

Earth at same time and Y axis completes right-handed coordinate system. 

 

Figure 2.1. Representation of Earth Centered Inertial Frame with unit vectors I, J, K 

for X, Y, Z directions respectively where X points at Vernal Equinox . (Vallado, 

2013) 
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The ECI frame defined here is also referred as J2000. In addition to J2000, there is 

also True Equator Mean Equinox (TEME) which is another Earth centered inertial 

frame defined as: 

• Coordinate System: Cartesian 

• Origin: Center of mass of the Earth 

• Orientation of Axes: Z axis points toward the true rotation axis at the current 

epoch, X axis points toward the mean vernal equinox at the current epoch 

and Y axis completes right-handed coordinate system. 

The distinction of the TEME from conventional ECI is that the nutation of the Earth’s 

obliquity (the angle between the equatorial plane and the ecliptic) and the precession 

of the vernal equinox are not calculated. Therefore, this frame is actually a quasi-

inertial one. The precession and nutation motions are shown in Figure 2.2 where 

Luni-solar effects are larger than the planetary effects. 

 

Figure 2.2. Representation of precession and nutation effects on the spin axis due to 

perturbation forces on the Earth. (Vallado, 2013) 
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2.1.1.2 Earth Centered Earth Fixed (ECEF or ECF) 

A body fixed frame is tied to the central body where the orbital motion is considered 

around. In this thesis, Earth is considered as the central body and therefore the axes 

of the coordinate system are rotating and osculating (with precession and nutation) 

with Earth for a body fixed frame. The assumptions of the Earth Centered Earth 

Fixed (or Earth Centered Fixed) frame are defined as follows: 

• Coordinate System: Cartesian 

• Origin: Center of mass of the Earth 

• Orientation of Axes: X axis points along the osculating vector from center of 

Earth toward the equator along the Prime Meridian (Greenwich, 0° 

Longitude), Z axis points along osculating spin-axis vector and Y axis 

completes right-handed coordinate system. 

 

Figure 2.3. Simplified Representation of Earth Centered Earth Fixed Frame with 

respect to Earth Centered Inertial Frame 
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Based on simplified representation given in Figure 2.3, the transformation matrix ℛ3 

from ECI to ECEF can be written as in Eq. (1) 

 ℛ3(Θ𝑔) = [

cos(Θ𝑔) sin(Θ𝑔) 0

−sin(Θ𝑔) cos(Θ𝑔) 0

0 0 1

]  (1) 

where Θ𝑔 is the Greenwich true sidereal angle which is calculated using Eq. (2). 

 Θ𝑔 = Θ𝑔,0 + 𝜔⨁(𝑡 − 𝑡0)  (2) 

Here Θ𝑔,0 is the Greenwich hour angle at the epoch 𝑡0 and 𝜔⨁ is the angular velocity 

of the Earth’s rotation around its spin axis (𝜔⨁ = 7.29212x10– 5rad/s). However, 

in reality there is also other transformations needed to compensate the motion of the 

Earth’s poles as well as the precession and nutation of the spin axis. Therefore, the 

final transformation matrix to transform an ECI vector to an ECEF vector, 𝑟𝐸𝐶𝐸𝐹 =

ℛ𝐸𝐶𝐸𝐹
𝐸𝐶𝐼 (𝑡, Θ𝑔)𝑟𝐸𝐶𝐼, is written in Eq. (3). 

 ℛ𝐸𝐶𝐸𝐹
𝐸𝐶𝐼 (𝑡, Θ𝑔) = 𝒲(𝑡)ℛ3(Θ𝑔)𝒩(𝑡)𝒫(𝑡)   (3) 

Here 𝒫(𝑡) represents the precession, 𝒩(𝑡) represents the nutation and 𝒲(𝑡) 

represents the polar motion compensations. The details of the calculation of such 

compensation matrices are provided in Chapter 3 of (Vallado, 2013). When 

transforming from TEME to ECEF, 𝒫(𝑡) and 𝒩(𝑡) are not calculated and mean 

sidereal angle is used instead of Greenwich true sidereal angle. 

2.1.1.3 Spacecraft Centered Local Frames 

Local frames are useful when the state representation is expressed with respect to a 

reference observer. In this thesis, the reference observer is the reference spacecraft 

as the main concern is the representation of relative motion. In this manner, this 

frame is a vehicle carried and rotating one defined as follows: 

• Coordinate System: Cartesian 

• Origin: Reference spacecraft 
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• Orientation of Axes: X axis points along the direction of the spacecraft 

position vector, Z axis points along the direction of the orbit normal vector 

and Y axis completes right-handed coordinate system. 

Here, X, Y, Z axes can be named as Radial, Transversal and Normal (RTN) 

respectively and can be represented in Figure 2.4. 

 

Figure 2.4. RTN frame centered in the reference spacecraft 

The transformation from an ECI vector to RTN can be dest 

 𝑟 = 𝑟𝐸𝐶𝐼  (4) 

 �⃑⃑� =
𝑟

|𝑟|
  (5) 

 �⃑⃑⃑� =
𝑟×�⃑⃑�

|𝑟×�⃑⃑�|
  (6) 

 �⃑⃑� = �⃑⃑⃑� × �⃑⃑�  (7) 

 𝑟𝑅𝑇𝑁 = [𝑅 ⋮ 𝑇 ⋮ 𝑁]𝑇𝑟𝐸𝐶𝐼 = 𝛽𝑅𝑇𝑁
𝐸𝐶𝐼 𝑟𝐸𝐶𝐼  (8) 

 𝑟𝑅𝑇𝑁 = [
𝑅𝑋 𝑅𝑌 𝑅𝑍

𝑇𝑋 𝑇𝑌 𝑇𝑍

𝑁𝑋 𝑁𝑌 𝑁𝑍

]𝑟𝐸𝐶𝐼  (9) 

 𝑟𝐸𝐶𝐼 = 𝛽𝑅𝑇𝑁
𝐸𝐶𝐼 𝑇

𝑟𝑅𝑇𝑁  (10) 

As it can be deduced from above formulation, the T direction is aligned with the 

velocity vector and can be called Along-Track for a circular reference orbit. 
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This spacecraft centered local frame can be also referred as Local Vertical Local 

Horizontal where the orientation of axes is changed such that Z axis is oriented in 

the direction of the center of Earth (Local Vertical), Y axis is along the negative 

direction to the orbit normal and X axis completes right-handed coordinate system. 

2.1.2 Keplerian Orbital Elements  

First of all, an orbit in two-dimensional space is represented by an ellipse which is 

shown in the Figure 2.5. 

 

Figure 2.5. Two-dimensional orbital elements with respect to inertial frame 

The ellipse describes the shape and size of an orbit where semimajor axis, 𝑎, is a 

measure of the size and eccentricity, 𝑒, describes ellipticity or circularity of the orbit. 

Here, 𝑒 = 0 defines a perfectly circular orbit and, 0 < 𝑒 < 1 is an elliptic orbit. In 

addition, while 𝑒 = 1 corresponds to parabolic orbit, 1 < 𝑒 corresponds to 

hyperbolic one and both are not closed orbits. The governing equations for two-

dimensional orbits are provided as follows: 

 𝑎 = (𝑟𝑎 + 𝑟𝑝)/2  (11) 

 𝑒 = (𝑟𝑎 − 𝑟𝑝)/(𝑟𝑎 + 𝑟𝑝)  (12) 
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 휀 =
𝑣2

2
−

𝜇

𝑟
= −

𝜇

2𝑎
  (13) 

 𝑇 = 2𝜋√
𝑎3

𝜇
  (14) 

 𝑛 = √
𝜇

𝑎3  (15) 

Where 𝑟𝑎 is the apoapsis radius which is the furthest point from the focal point, 𝑟𝑝 is 

the periapsis radius which is the closest point from the focal point, 휀 is the orbital 

energy, 𝑇 is the orbital period and 𝑛 is the mean motion and 𝜇 is the gravitational 

constant. The last parameter for two-dimensional, or planar, representation of the 

orbit is the true anomaly, 𝜐, which describes the position of the spacecraft. Finally, 

the position, 𝑟, can be found using Eq. (16).  

𝑟 =
𝑝

1 + 𝑒 𝑐𝑜𝑠 𝜈
=

𝑎(1 − 𝑒2)

1 + 𝑒 𝑐𝑜𝑠 𝜈
 (16) 

 

For representing orbits in three-dimensional space, the orientation parameters of the 

orbital plane with respect to inertial frame are also needed. With these orientation 

parameters, the full orbital elements are shown in the Figure 2.6. 

 

Figure 2.6. Three-dimensional orbital elements with respect to inertial frame 
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Here, several vectors are defined which are eccentricity vector, 𝑒, angular 

momentum vector, ℎ⃑⃑ = 𝑟 × �⃑�, and node vector, �⃑⃑� = �⃑⃑⃑� × ℎ⃑⃑. The eccentricity vector 

points toward the periapsis and is calculated using the relation given in Eq. (17) 

𝑒 =
�⃑� × ℎ⃑⃑

𝜇
−

𝑟

𝑟
 

where|𝑒| = 𝑒. 

(17) 

Here, the node vector is the cross product of Z direction of the ECI and angular 

momentum vector and it points toward the intersection point of the orbital plane and 

the equatorial, or X-Y, plane. This intersection point is also called the ascending 

node. 

Using these vectors, the three-dimensional orientation of an orbit can be described. 

Firstly, the angle between the Z direction and the ℎ⃑⃑, or orbit normal, is called the 

inclination. Inclination angle, 𝑖, measures the tilt of the orbital plane with respect to 

equatorial plane. The angle from the X direction to the ascending node is called the 

Right Ascension of the Ascending Node (RAAN), Ω. Together with 𝑖, it defines the 

orientation of orbital plane in three-dimensional space. Finally, the angle between 

the node and eccentricity vectors is called the Argument of Perigee, 𝜔, which 

describes the orientation of the orbit within the orbital plane. With these six 

parameters which are so called Keplerian elements an orbit can be defined in three-

dimension with respect to inertial frame. 

In addition to Keplerian elements, there are a few more parameters that can be useful 

for orbit design and analysis. Firstly, the mean anomaly, 𝑀, describes the angle that 

the spacecraft travels from the perigee with the rate of mean motion, 𝑀 = 𝑛(𝑡 − 𝑡𝑝) 

where 𝑡𝑝 is the time at perigee passage. This parameter corresponds to true anomaly 

for circular orbits and can be used as a measure of time rather than an angular 

measure of the spacecraft’s location. Secondly, it becomes difficult to define the 

argument of perigee for near circular orbits and therefore it is useful to introduce 

another parameter called the argument of latitude, 𝑢 = 𝜔 + 𝜈. Finally, Local Time 

of the Ascending Node (LTAN) is the local time the spacecraft crosses the node on 
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its ascending pass, when travelling from the Southern Hemisphere to the Northern 

Hemisphere. Usually, Earth Observation missions utilize the so-called Sun 

Synchronous orbit (SSO) where the angle between the orbital plane and Sun is fixed 

(with the use of perturbation effects of Earth’s oblateness) and therefore the LTAN 

becomes ideally constant. 

2.1.2.1 Transformation of Keplerian Elements to Cartesian State Vector 

The Keplerian elements can be calculated for a given cartesian state vector, where 

we have 𝑟 and �⃑�, using the relations provided previously. However, it is also 

necessary to calculate the state vectors for a given orbital elements. For this, it is 

necessary to introduce a local frame called PQW which is shown in Figure 2.7 

 

Figure 2.7. Representation of PQW frame 

The PQW frame is defined as follows: 

• Coordinate System: Cartesian 

• Origin: Focal point of the ellipse 

• Orientation of Axes: X axis points toward the apoapsis, Z axis points along 

the direction of the orbit normal vector and Y axis completes right-handed 

coordinate system. 
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The position vector 𝑟𝑃𝑄𝑊 can be calculated with Eq. (18) 

𝑟𝑃𝑄𝑊 = 𝑟 𝑐𝑜𝑠 𝜈  �⃗⃑� + 𝑟 𝑠𝑖𝑛 𝜈 �⃑⃗� =

[
 
 
 
 

𝑝 𝑐𝑜𝑠 𝜈

1 + 𝑒 𝑐𝑜𝑠 𝜈
𝑝 𝑠𝑖𝑛 𝜈

1 + 𝑒 𝑐𝑜𝑠 𝜈
0 ]

 
 
 
 

 (18) 

 

Likewise, velocity vector 𝑣𝑃𝑄𝑊 can be calculated with Eq. (19) 

�⃑�𝑃𝑄𝑊 = [
�̇� cos 𝜈 − 𝑟�̇� 𝑠𝑖𝑛 𝜈
�̇� 𝑠𝑖𝑛 𝜈 + 𝑟�̇� 𝑐𝑜𝑠 𝜈

0
] =

[
 
 
 
 
 
 

−√
𝜇

𝑝
𝑠𝑖𝑛 𝜈

√
𝜇

𝑝
(𝑒 + 𝑐𝑜𝑠 𝜈)

0 ]
 
 
 
 
 
 

 (19) 

 

Finally, PQW vectors, which can be position or velocity, can be transformed to ECI 

coordinates using the transformation matrix given in Eq. (20) 

𝑟𝐸𝐶𝐼(𝑜𝑟�⃑�𝐸𝐶𝐼) = ℛ3(−Ω)ℛ1(−𝑖)ℛ3(−𝜔)𝑟𝑃𝑄𝑊(𝑜𝑟�⃑�𝑃𝑄𝑊) (20) 

where ℛ1 is a rotation matrix around X and ℛ3 is a rotation matrix around Z. 

2.1.3 Orbital Perturbations 

The Keplerian orbital elements except true anomaly are constant where only the 

primary body and the orbiting spacecraft exist in the universe as point masses. This 

is also called two-body dynamics and defines the ideal orbital motion. The additional 

assumptions governing two-body dynamics are as follows: 

• The primary body which is the source of main gravitational attraction is 

spherical and the mass distribution is uniform 

• Only the gravitational forces act on the satellite 
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However, neither the primary body is spherical and the mass distribution is uniform 

nor only gravitational forces that act on the motion of the spacecraft. For instance, 

non-gravitational forces induced by atmospheric drag and radiation pressure may 

play a significant role for calculating highly accurate orbits. In addition, there are 

other bodies such as Moon and Sun which induce perturbative forces. In the 

following subchapters, these perturbative forces will be introduced. Detailed 

techniques for modeling of the orbital perturbations can be found in (Vallado, 2013) 

and (Montenbruck & Gill, Satellite Orbits: Models, Methods, and Applications, 

2011) and the magnitudes of the major perturbation effects are shown in Figure 2.8. 

 

Figure 2.8. Comparison of the perturbing accelerations affecting satellites at various 

altitudes. Indicated are the effects of Earth’s gravitation (central term GM and 

harmonic term Jn,n), the perturbation from point masses (Moon, Sun, Venus) as well 

as the influence of radiation pressure and drag. (Montenbruck, Orbital Mechanics, 

2009) 
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By investigating this figure, it can be deduced that the relative effect of perturbations 

are highly dependent on orbital altitude. For instance, the major forces appear to be 

the central term of the Earth’s gravitation (GM), J2 term which will be introduced 

later and the luni-solar perturbations (due to Sun and Moon point masses). In 

addition, the atmospheric drag is effective for Low Earth Orbit (LEO). 

2.1.3.1 Earth’s Gravity 

The Earth’s radius at the poles is about 20 km smaller than at the equator due to its 

rotation. This oblateness has significant effects on the orbital motion. The non-

spherical Earth and its non-homogeneous mass distribution can be taken into account 

with a generalized formulation of Earth’s gravity. For this, an expansion of the 

gravitational potential in terms of spherical harmonics can be employed with respect 

to geocentric latitude, 𝜑, and longitude, 𝜆, at a distance 𝑟 from the Earth’s center. 

This can also be interpreted as adding or subtracting ‘bands’ of mass onto a perfectly 

spherical central body (Imre, 2006). The ‘latitudinal bands’ are called zonal 

harmonics and are symmetrical about the polar axis. Tesseral harmonics can be 

visualized as ‘tiles’ on the sphere. The ‘longitudinal bands’ are called sectorial 

harmonics. Zonal, tesseral and sectoral harmonics are illustrated in Figure 2.9. 

 

Figure 2.9. Zonal, tesseral and sectorial harmonics 

The potential function describing the Earth’s non-uniform gravity is provided by 

(Montenbruck & Gill, Satellite Orbits: Models, Methods, and Applications, 2011) 

and summarized by Eq. (21) 
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𝑈 =
𝜇

𝑟
∑ ∑ (

𝑅⨁

𝑟
)
𝑛

𝑃𝑛𝑚

𝑛

𝑚=0

sin(𝜑) [𝐶𝑛𝑚 cos(𝑚𝜆) + 𝑆𝑛𝑚sin(𝑚𝜆)]

∞

𝑛=0

 (21) 

 

Here, 𝑅⨁ is the Earth’s equatorial radius and 𝑃𝑛𝑚 is for the associated Legendre 

polynomial of degree n and order m. The harmonic coefficients 𝐶𝑛𝑚 and 𝑆𝑛𝑚 of the 

gravitational field are determined by observations. For a given potential, 𝑈, the 

corresponding acceleration can be calculated from the gradient given in Eq. (22)  

�̈�𝐺 = ∇𝑈 = (
𝜕𝑈

𝜕𝑥
;
𝜕𝑈

𝜕𝑦
;
𝜕𝑈

𝜕𝑧
) (22) 

 

For the main term 𝐶0,0 = 1, Newton’s law of universal gravitation describing the 

attraction of a spherical body with isotropic mass distribution is obtained.  

In addition, Earth’s oblateness’ effect is calculated considering the zonal coefficient  

𝐶2,0 = 𝐽2 = −1.082 ∙ 10−3 leading to an acceleration given in Eq. (23) 

�̈�𝐽2 = [
�̈�
�̈�
�̈�
] = −

3

2
𝐽2

𝑅⨁
2

𝑟5

[
 
 
 
 
 
 𝑥 − 5𝑥

𝑧2

𝑟2

𝑦 − 5𝑦
𝑧2

𝑟2

3𝑧 − 5
𝑧3

𝑟2]
 
 
 
 
 
 

 (23) 

 

This results in a net torque that rotates the orbital plane which is described by 

equations (24) and (25) 

∆Ω̇ = −
3

2
𝐽2𝑛

𝑅⨁
2

𝑎2(1 − 𝑒2)2
cos(𝑖) (24) 

∆ω̇ =
3

4
𝐽2𝑛

𝑅⨁
2

𝑎2(1 − 𝑒2)2
[4 − 5𝑠𝑖𝑛2(𝑖)] (25) 
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By carefully selecting 𝑎, 𝑒 and 𝑖, the rate ∆Ω̇ can be equated to the apparent rotation 

rate of the Sun, i.e. 2𝜋/365𝑑𝑎𝑦𝑠, which results in the so-called Sun Synchronous 

Orbit as explained previously. 

The perturbations caused by the Earth’s gravity are computed in the ECEF and are 

transformed to ECI when integrated for orbit propagation. 

2.1.3.2 Third Bodies 

In addition to Earth, there are other bodies, such as Sun and Moon, that exert an 

acceleration on spacecraft which is caused by the attraction between two masses. 

Since these forces also effect the Earth’s center of mass, only the difference between 

two acceleration functions becomes effective. This can be described by Eq. (26). 

�̈�3𝑟𝑑𝐵𝑜𝑑𝑦 = 𝜇𝑆

𝑟𝑠 − 𝑟

|𝑟𝑠 − 𝑟|3
− 𝜇𝑆

𝑟𝑠
|𝑟𝑠|3

 (26) 

Here, 𝜇𝑆 is the gravitational constant and 𝑟𝑆 is the geocentric position of the attracting 

body. In this equation, the perturbing body is assumed to be a point mass as the 

distances are considerably large. 

2.1.3.3 Solar Radiation Pressure 

Apart from the gravitational perturbations, there is a non-gravitational force caused 

by the radiation pressure of the Sun. As the photons with energy 𝐸 are absorbed on 

spacecraft surface an impulse is transferred with a magnitude 𝑝 = 𝐸/𝑐. From a mean 

distance of 1 AU (~149.6 Million km), the Solar flux, Φ, has an average value of 

1371 W/m2 and this pressure becomes 𝑃0 =
Φ

𝑐
= 4.57 ∙ 10−6𝑁/𝑚2.  

If the photons are not absorbed and completely reflected, the transferred impulse 

becomes twice as high. In this manner, the total perturbing acceleration resulting 

from Solar radiation pressure is described by Eq. (27). 
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�̈�𝑆𝑅𝑃 = −(1 + 휀𝑅)
𝐴

𝑚
∙ 𝑃0𝐿 (

1𝐴𝑈

𝑟𝑠𝑢𝑛
)
2

∙
𝑟𝑠𝑢𝑛

|𝑟𝑠𝑢𝑛|
 (27) 

 

Where 𝐴 is the Sun-facing cross-sectional area, 𝑚 is the spacecraft mass and 휀𝑅 is 

the reflectivity which describes the relation between reflected and incidental sunlight 

and 𝐿 is the illumination ratio. The term (1 + 휀𝑅) is referred as radiation pressure 

coefficient and can be written as 𝐶𝑅 = (1 + 휀𝑅). As it can be deduced, the 

acceleration always acts in opposite direction of the spacecraft to Sun vector and it 

depends on the reflectivity and effective area of the surface. Finally, it is also 

important to consider how much the spacecraft is exposed to Solar light or namely 

the illumination ratio. For this a dual cone shadow model by (Ortiz Longo & 

Rickman, 1995) is utilized with light time delay compensation. It is umbra when 𝐿 =

0, penumbra when 𝐿 < 1 and total sunlight when 𝐿 = 1. 

 

Figure 2.10. Representation of dual cone shadow model with penumbra and umbra 

2.1.3.4 Atmospheric Drag 

Another major non-gravitational force that perturbs an orbit with low altitudes is the 

atmospheric drag. The atmosphere is very thin at higher altitudes however it still 

causes energy losses and altitude decay. The acceleration caused by the atmospheric 

drag can be described by Eq. (28) 

�̈�𝐷𝑟𝑎𝑔 = −
1

2
𝜌𝐶𝐷

𝐴

𝑚
∙ 𝑣𝑟𝑒𝑙

2
𝑣𝑟𝑒𝑙

|𝑣𝑟𝑒𝑙|
 (28) 
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Here, 𝜌 is the atmospheric density, 𝐶𝐷 is the drag coefficient which represent the 

individual aerodynamic characteristic of a particular body, 𝐴 is the cross-sectional 

area, 𝑚 is the spacecraft mass and 𝑣𝑟𝑒𝑙 is the relative velocity with respect to 

atmosphere. 

While calculating perturbations due to drag, determination of atmospheric density 

and drag coefficient plays an important role. Drag coefficient can be calculated 

through complex calculations that take into account the conditions of the upper 

atmosphere however it is often estimated or calibrated within orbit determination 

operations. For high fidelity drag calculations, an atmospheric model which 

incorporates chemical composition of atmosphere as well as solar and geomagnetic 

activity should be used (NOAA SWPC, 2022). Here, NRLMSISE-00 model is 

utilized (Picone, Hedin, & Drob, 2002) in which chemical composition of 

atmosphere, F10.7 cm radio emissions (NOAA SWPC, 2022) as an indicator of solar 

activity and Ap (NOAA NESDIS, 2022) as an indicator of Geomagnetic magnetic 

activity are incorporated. 

2.1.4 Propagation of Orbits 

Orbit propagation or prediction mainly answers three questions: 

• Where was the spacecraft? 

• Where is it now? 

• Where is it going to be? 

In order to answer these questions with high accuracy and precision, proper force 

models as described previously should be incorporated in a proper mathematical 

integration. This can be achieved through analytical models or numerical methods 

and the techniques used in this thesis are explained in the following subchapters.  
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2.1.4.1 Analytical Orbit Models 

With analytical models, the orbital path can be described by orbital elements as a 

function of time. In this manner, the spacecraft’s position can be obtained in the past, 

present or future epochs without intermediate steps. For instance, the Keplerian orbit 

model (or two body) which is introduced previously describes the spacecraft motion 

in a central force field. 

When the perturbations are applied, the temporal effects on orbital elements can be 

calculated through Gaussian variational equations which are introduced as follows: 

𝑑𝑎

𝑑𝑡
=

2

𝑛√1 − 𝑒2
 [𝑒 sin 𝜈 ∙ 𝑎𝑅 +

𝑝

𝑟
∙ 𝑎𝑇] (29) 

 

𝑑𝑒

𝑑𝑡
=

√1 − 𝑒2

𝑛𝑎
[sin 𝜈 ∙ 𝑎𝑅 + (cos 𝐸 +cos 𝜈) ∙ 𝑎𝑇] (30) 

 

𝑑𝑖

𝑑𝑡
=

1

𝑛𝑎2√1 − 𝑒2
𝑟 cos 𝑢 ∙ 𝑎𝑁 (31) 

 

𝑑Ω

𝑑𝑡
=

1

𝑛𝑎2√1 − 𝑒2

𝑟 sin 𝑢

sin 𝑖
∙ 𝑎𝑁 (32) 

 

𝑑𝜔

𝑑𝑡
=

√1 − 𝑒2

𝑛𝑎𝑒
[− cos 𝜈 ∙ 𝑎𝑅 + (1 +

𝑟

𝑝
) sin 𝜈 ∙ 𝑎𝑇] − cos 𝑖 ∙ 

𝑑Ω

𝑑𝑡
 (33) 

 

𝑑M0

𝑑𝑡
=

1

𝑛𝑎2𝑒
∙ [(𝑝 cos 𝜈 − 2𝑒𝑟) ∙ 𝑎𝑅 − (𝑝 + 𝑟) sin 𝜈 ∙ 𝑎𝑇] (34) 

 

where 𝑎𝑅, 𝑎𝑇 and 𝑎𝑁 are the perturbation accelerations in RTN frame and 𝐸 is called 

eccentric anomaly which is solved for 𝐸 − 𝑒 sin𝐸 = 𝑀. Here, the perturbations can 
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be calculated along the orbit and represented as a periodic series expansion. Then, 

this can be integrated to achieve an analytical expression for orbital elements with 

respect to time. An important example of such analytical model is developed by 

(Kaula, 1966). 

The perturbations may cause periodic and secular changes on the orbital elements 

over time. This is represented in the Figure 2.11. 

 

Figure 2.11. Change of orbital elements over time due to perturbations 

Here, we can refer single orbit as short term and monthly and/or yearly variations as 

long term. The secular perturbations describe the long-term remaining changes after 

averaging for short or long terms. 

Most widely used analytical model is the Simplified General Perturbations Model 

No. 4 (SGP4). The SGP4 makes use of specific “mean” orbital elements, which will 

be explained later, and several other parameters which are only valid for this model. 

These elements are represented in a two-line data format which is called Two-Line 

Elements (TLE). The meaning of TLE parameters is shown in Figure 2.12.  
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Figure 2.12. Two Line Element (TLE) format and its description (Montenbruck, 

Orbital Mechanics, 2009) 

SGP4 model is built upon gravitational perturbation model by (Brouwer, 1959) and 

an analytical model that describes atmospheric drag. Here, the atmospheric density, 

𝜌, is described with respect to altitude, ℎ, in Eq. (35). 

𝜌𝑆𝐺𝑃4(ℎ) = 2.461 ⋅ 10−8
𝑘𝑔

𝑚3
(

42𝑘𝑚

ℎ − 78𝑘𝑚
) (35) 
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The currently used complete model is described by (Hoots, Roehrich, & Kelso, 1988) 

where secular and periodical perturbations are accounted for the gravitational field 

coefficients 𝐽2, 𝐽2,2, 𝐽3 and 𝐽4. SGP4 model is valid for the orbits with altitude below 

6000 km. If the orbital period is greater than 225 min. then the model also considers 

the perturbations caused by Sun and Moon and the TLEs are generated accordingly. 

The output of SGP4 is a cartesian state vector in TEME. 

The accuracy of the SGP4 is shown in Figure 2.13 for a 3-day fit for an LTAN 10:30 

SSO at 680 km altitude.  

 

Figure 2.13. Position error of SGP4 model for a 3-day fit 

As it can be seen, the errors stay within a bound between a hundred meters and 2 km 

fpr 3 days of propagation. The error grows in time quadratically and mainly occurs 

in the flight direction due to the inaccuracy of the drag calculations with poor 

atmospheric density prediction. If the time span is elongated to 7 days (instead of 3) 

then the maximum position error reaches up to 4.5 km. When the variance of 
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atmospheric density is relatively low, these errors decrease. Although the error of 

SGP4 limits calculations for a high precision absolute orbit analysis, it is still 

effective to analyze relative distances through differentiating TLEs of all spacecraft 

in a cluster. Here, common errors can be cancelled and the expected accuracy can be 

about 30-100 m. in radial and normal direction and better than 500 m. in transversal 

direction (Kirschner M., 2001). Use of TLEs for relative motion analysis is explained 

more in Chapter 2.2.4 

2.1.4.2 Osculating and Mean Orbital Elements 

Osculating orbital elements are a set of Kepler parameters that reproduce the 

spacecraft’s exact position and velocity at a specific time instant. However, because 

of the orbital perturbations, it is not possible to match that exact position and velocity 

at another instant. Therefore, these elements can be referred as instantaneous orbital 

elements. On the other hand, the mean orbital elements are fit such that the obtained 

trajectory is relatively close to the observations of an orbiting body. A good analogy 

for osculating and mean elements can be provided in terms of linear regression to an 

arbitrary observation of a unitless parameter that is shown in Figure 2.14. 
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Figure 2.14. Osculating and mean elements with respect to an observation 

Here, the osculating element matches exactly to a single observation however can 

predict another observation with a high error. On the other hand, mean element does 

not specifically match to an observation exactly however it follows the trend of 

observations and produces relatively less error for a given time interval. A sample 

evolution of osculating and mean orbital elements over a year provided by (Zhong 

& Gurfil, 2013) can be seen in Figure 2.15. 
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Figure 2.15. Osculating and mean semimajor axis and eccentricity for a sample one-

year simulation (Zhong & Gurfil, 2013) 

As it can be seen from the figures, mean orbital elements can capture the long-term 

evolution while removing high frequency oscillations making it practical for 

planning corrections to compensate unwanted effects of orbital perturbations. For 
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example, correction for altitude decrease due to atmospheric drag can be evaluated 

by analyzing the mean values (blue line) for semimajor axis instead of responding to 

the fast variations of the osculating values (red line) which would result in 

unnecessary propellant consumption. 

2.1.4.3 Numerical Propagation 

Another way to compute the orbits of spacecraft is to numerically integrate 

acceleration vectors for an initial state vector. Compared to analytical methods, 

numerical integration provides a much higher accuracy depending on the integration 

method. However, a comparison between analytical and numerical methods is 

provided by (Gill, 2011) and shown in Table 2.1. 

Table 2.1 Methods and their characterization for absolute orbit computation 

Method Type Application Strengths Examples 

Numerical Numerical 

integration of 

EOM 

Orbit 

determination 

- Accuracy  

- Generality 

- Runge - 

Kutta 

- Symplectic 

Analytical Perturbation 

theory 

Mission 

planning 

- Physical 

insight 

- Low 

computational 

effort 

- SGP4 

- Kaula 

 

For numerical integration, the orbital motion is described by a differential equation 

in the form as follows: 

𝑥(𝑡) =  (
𝑟(𝑡)

𝑣(𝑡)
) , �̇�(𝑡) =  (

𝑣(𝑡)

𝑎(𝑡)
), (36) 
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�̇�(𝑡) = 𝑣(𝑡), �̈�(𝑡) =  �̇�(𝑡) = 𝑎(𝑡) 

Where 𝑟, 𝑣 and 𝑎 are the position, velocity and acceleration vectors respectively. One 

can integrate the derivatives of state vector from an initial condition to obtain 

position and velocity at multiple time instants until desired duration is achieved. 

Compared to analytical models which requires a closed-form solution of perturbation 

acceleration, numerical methods are less limited.  Here, it is sufficient to calculate 

accelerations given in Eq. (37) at discrete time instants. 

�̈�(𝑡) = 𝑎𝐺𝑟𝑎𝑣𝑖𝑡𝑦 +𝑎𝑆𝑢𝑛 +𝑎𝑀𝑜𝑜𝑛 +𝑎𝐷𝑟𝑎𝑔 +𝑎𝑆𝑜𝑙𝑅𝑎𝑑 +𝑎𝑇ℎ𝑟𝑢𝑠𝑡 + ⋯ (37) 

Another important point is the choice of a suitable integration method. This depends 

on the required accuracy, eccentricity and length of the orbital arc (or duration) to be 

calculated. A popular example for a single step method is the Runge-Kutta fourth-

order method (RK4) with a set of equations given in Eq. (38) for a step size of ℎ. 

𝑥(𝑡 + ℎ) = 𝑥(𝑡) +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

𝑘1 = 𝑓(𝑡, 𝑥(𝑡)) 

𝑘2 = 𝑓 (𝑡 +
ℎ

2
, 𝑥(𝑡) +

ℎ

2
𝑘1) 

𝑘3 = 𝑓 (𝑡 +
ℎ

2
, 𝑥(𝑡) +

ℎ

2
𝑘2) 

𝑘4 = 𝑓(𝑡 + ℎ, 𝑥(𝑡) + ℎ𝑘3) 

(38) 

Although it is relatively easy to implement Runge-Kutta methods and obtain high 

accuracy, it is not possible to conserve the energy which would adversely affect the 

accuracy in long term. This is shown Figure 2.16 where only Keplerian force field is 

considered to evaluate solely the numerical method. 
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Figure 2.16. Energy plot of RK4 integrator for two body force field 

To overcome energy losses, a symplectic integration methodology can be utilized 

(Mikkola, 1999). Symplectic methods conserves energy and momentum for higher 

order gravitational potential where Hamiltonian formulation is given in Eq. (39) 

𝐻(𝑟, 𝑣) = 𝐾(𝑟, 𝑣) + 𝑅(𝑟) =
1

2
𝑣2 −

𝜇

𝑟
+ 𝑅(𝑟) 

�̇� =
𝜕𝑟

𝜕𝑡
=

𝜕𝐻

𝜕𝑣
,   �̇� =

𝜕𝑣

𝜕𝑡
= −

𝜕𝐻

𝜕𝑟
 

�̇� =
𝜕𝐻

𝜕𝑣

𝜕𝑣

𝜕𝑡
+

𝜕𝐻

𝜕𝑟

𝜕𝑟

𝜕𝑡
=

𝜕𝐻

𝜕𝑣
(−

𝜕𝐻

𝜕𝑟
) +

𝜕𝐻

𝜕𝑟

𝜕𝐻

𝜕𝑣
= 0 

(39) 

Here splitting Hamiltonian enables us to compute Keplerian, 𝐾(𝑟, 𝑣), and higher 

order gravitational parts, 𝑅(𝑟), separately. In addition, we can introduce leap frog 

schemes described as follows: 
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Figure 2.17. Leap frog representation 

For leap frog scheme, R is independent of velocity and causes a jump in velocity 

with no change in position where 

∆𝑣 = −ℎ
𝜕𝑅

𝜕𝑟
 (40) 

With symplectic integration, it is possible to incorporate analytical Kepler model into 

numerical integration and calculate Hamiltonians with different orders separately 

(Yoshida, 1990). Here, we can consider a composite symplectic integration scheme 

which is described in Figure 2.18. 

 

Figure 2.18. A composite symplectic integration scheme 

With this integration scheme, different forces can be integrated with different time 

steps where 𝑥1, 𝑥2 and 𝑤 are propagator specific ratios of a fixed time step ℎ. 
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Considering different orders of perturbative accelerations shown in Figure 2.8, 

integrating different accelerations with different time steps can also reduce 

computational effort. Finally, the implemented integration scheme is shown in 

Figure 2.19. 

 

Figure 2.19. Implemented symplectic integration scheme 

The energy plot for symplectic integration method for Keplerian motion is provided 

in Figure 2.20. 

 

Figure 2.20. Energy plot of symplectic integrator for two body force field 
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As it can be seen from Figure 2.20, the energy is relatively constant when compared 

to RK4 integrator. Finally, the comparison of numerical integration methods for 

Keplerian motion is summarized in Table 2.2. 

Table 2.2 Comparison of numerical methods 

Method Runge-Kutta Symplectic 

Energy Conversation No Yes 

Different Time Steps for Different 

Forces 

No Yes 

Analytic Model Incorporation No Yes 

Error in Position after 30 days [m]  

(Compared to Analytical Solution) 

 

10.4 10.4 

Propagation Time [sec] 48 11 

 

To demonstrate the accuracy of the developed orbit propagator, real flight data are 

used to propagate and compare 6 day separated reference states (initial and final) 

which are obtained by filtering GPS receiver outputs.  The assumptions and result of 

state comparison is given in Table 2.3. 

Table 2.3 Comparison of numerically propagated states and real flight data  

Parameter Value 

Interval Between Reference States 6-12 August 2018, 5.98 days 

Orbit SSO (LTAN 10:30) at 660 km. altitude 

Numerical Method 3rd Order Formulation for Symplectic 

Propagation with Analytical 2-Body, 6th 

Order J2 Integration and Leapfrog Scheme 

for Higher Order Terms 
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Force Models Earth’s Gravity with Degree: 20, Order: 20 

Luni-Solar Third Body 

Solar Radiation Pressure (Spherical Body, 

Conic Shadow Model) 

Atmospheric Drag (NRLMSISE-00 density 

model, space weather with F10.7: 70, 

F10.7A: 71.5, Ap: 5.4) 

Difference Between Propagated 

and Reference States at Terminal 

~430 m. 

 

Considering that the atmospheric drag would be a major uncertainty for real life 

space flight in LEO, the resulting position error is within an acceptable range for 

validating the developed high precision orbit propagator. Instead of using space 

weather data and assuming a slightly different space weather activity (F10.7: 100, 

F10.7A: 100, Ap: 5.4) would have resulted in a position error of 1.3 km and assuming 

an increased activity (F10.7: 150, F10.7A: 150, Ap: 5.4) would have resulted in a 

position error of 9.8 km. 

2.2 Representation and Propagation of Relative Orbit 

For cluster flying, it is necessary to calculate and analyze relative spacecraft motion. 

Here, two fundamentally different approach can be applied:  numerically integrated 

absolute orbits of spacecraft can be differenced to obtain relative trajectories or a 

dedicated analytical model can be used to describe the relative motion. In this 

manner, several representations of and modeling techniques for relative motion will 

be introduced in following subchapters. 
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2.2.1 Cartesian Representation and Hill-Clohessy-Wiltshire Equations 

As described in Chapter 2.1, a high precision orbit propagator is developed based on 

cartesian state elements where relative state can also be represented in RTN frame 

as described in Chapter 2.1.1.3. Here, using the propagation of orbits of reference 

and other spacecraft, relative cartesian states in ECI can be simply obtained by 

subtracting the positions of a specific spacecraft from the reference ones as follows: 

∆𝑋𝑙 = [

𝑋𝑙 − 𝑋𝑟

𝑌𝑙 − 𝑌𝑟

𝑍𝑙 − 𝑍𝑟

] (41) 

Where l is an index for the specific spacecraft and r refers to reference. This relative 

position can be transformed from inertial frame to RTN or LVLH frame which is 

defined by the reference orbit. With this, these relative positions can be further 

decomposed into radial (R), along-track (T) and cross-track (N) components and the 

relative position vector for each spacecraft becomes ∆𝑋𝑙,𝑅𝑇𝑁 = [∆𝑅𝑙 ∆𝑇𝑙 ∆𝑁𝑙]. 

Finally, the relative distance between any two spacecraft at a specific discrete time 

instant can be written as ∆𝑋𝑙,𝑚,𝑗 = [∆𝑅𝑙,𝑚,𝑗 ∆𝑇𝑙,𝑚,𝑗 ∆𝑁𝑙,𝑚,𝑗] where 𝑙 ≠ 𝑚  are 

spacecraft indices, and 𝑗 indicates a discrete time instant. In this manner, ∆𝑋𝑙,𝑚,𝑗 

describes the relative distance between the spacecraft l and m at the time instant j.  

The most common model of relative motion which utilizes the cartesian relative state 

representation is the Hill-Clohessy-Wiltshire (HCW) Equations. The model 

considers two spacecraft in an Earth-bound orbit where one is selected as reference 

(or chief) and the other referred as deputy. The assumptions for HCW can be 

summarized as follows: 

• Pure Keplerian (two-body) motion 

• Reference spacecraft is on a circular orbit 

• Relative spacecraft separation is much smaller than the geocentric distance 

of the satellites 
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With these assumptions, the relative motion can be described by Eq. (42) (Hill, 

1878), (Clohessy & Wiltshire, 1960). 

�̈� − 2𝑛�̇� − 3𝑛2𝑥 = 0
�̈� + 2𝑛�̇� = 0

�̈� + 𝑛2𝑧 = 0

 (42) 

where x, y and z are aligned with the radial, along-track and cross-track directions 

respectively. It can be also observed that HCW equations are coupled differential 

equations where out-of-plane motion (cross-track) is completely decoupled from the 

in-plane motion (radial and along-track). 

The HCW equations can be integrated in closed form. With this, a state transition 

matrix (STM) can be found to calculate the relative state at time 𝑡 after the initial 

epoch for a given initial condition (𝑥0 𝑦0 𝑧0 �̇�0 �̇�0 �̇�0) as given in Eq. (43) 

(

 
 
 

𝑥(𝑡)

𝑦(𝑡)
𝑧(𝑡)
�̇�(𝑡)

�̇�(𝑡)
�̇�(𝑡))

 
 
 

=

[
 
 
 
 
 
 
 

1 0 − 𝑐𝑜𝑠 𝜏  − 𝑠𝑖𝑛 𝜏 /𝑛 0 0

−
3

2
𝑛(𝑡 − 𝑡0) 1 2 𝑠𝑖𝑛 𝜏 −2 𝑐𝑜𝑠 𝜏 /𝑛 0 0

0 0 0 0 𝑠𝑖𝑛 𝜏 /𝑛 −𝑐𝑜𝑠 𝜏 /𝑛
0 0 𝑛 𝑠𝑖𝑛 𝜏 −𝑐𝑜𝑠 𝜏 0 0

−
3

2
𝑛 0 2𝑛 𝑐𝑜𝑠 𝜏 2 𝑠𝑖𝑛 𝜏 0 0

0 0 0 0 𝑐𝑜𝑠 𝜏 𝑠𝑖𝑛 𝜏 ]
 
 
 
 
 
 
 

(

 
 
 

4𝑥0 + 2�̇�0/𝑛
𝑦0 − 2�̇�0/𝑛
3𝑥0 + 2�̇�0/𝑛

−�̇�0

�̇�0

−𝑛𝑧0 )

 
 
 

 (43) 

where 𝜏 = 𝑛𝑡. This solution indicates that the cross-track motion is that of a 

harmonic oscillator. Although most of the terms are periodic, there are secular terms 

in in-plane (radial and along-track) motion which correspond to the spacecraft 

drifting apart due to a difference in energies, hence a difference in rotation rates. The 

full closed form periodic solution would require 4𝑥0 + 2�̇�0/𝑛 = 𝑦0 − 2�̇�0/𝑛 = 0. 

It is also possible to find initial conditions such that the spacecraft do not drift apart. 

If the spacecraft drift apart too much, the first order approximation would fail. In 

reality, perturbations such as drag would eventually cause such separation unless 

some corrective control is applied. 
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2.2.2 Relative Orbital Elements 

While cartesian relative states can be used for evaluating relative distances, relative 

orbital elements, ∆𝛼𝑖 = 𝛼𝑖 − 𝛼𝑟, are useful for relative motion design and control. 

In addition, relative orbital elements can provide an immediate insight in to the 

relative geometry which is difficult to extract when working with cartesian states. 

Designing cluster flying configurations is basically equivalent to defining relative 

orbital elements for several spacecraft based on a reference orbit. Here, the reference 

orbit is specific for each type of mission and it is derived from several needs and 

constraints depending on the application. However, once it is fixed, relative orbits 

can be defined by introducing small differences to reference orbital elements as given 

in Eq. (44).  

𝛼𝑖 = 𝛼𝑟 + ∆𝛼𝑖  (44) 

where r indicates the reference orbit and 𝑖 indicates the spacecraft number within the 

cluster. In this equation, relative orbital elements are defined as 

∆𝛼 = [∆𝑎 ∆𝑒 ∆𝑖 ∆Ω ∆𝜔 ∆𝜐]. If the relative orbital elements are given in 

mean form, then these elements can be changed to mean elements. This will also 

provide orbital elements, or initial conditions, for each spacecraft which can be 

propagated through proper analytical models or numerical integrators with proper 

parameters and force models. 

Relative mean orbital elements can be represented in both singular and quasi non-

singular (qns) forms (Koenig, Guffanti, & D'Amico, 2016) as provided in Eq. (45) 

and Eq. (46) respectively 

∆𝛼𝑠 =

[
 
 
 
 
 
∆𝑎
∆𝑒
∆𝑖
∆Ω
∆𝜔
∆𝑀]

 
 
 
 
 

=

[
 
 
 
 
 
𝑎𝑑 − 𝑎𝑐

𝑒𝑑 − 𝑒𝑐

𝑖𝑑 − 𝑖𝑐
Ω𝑑 − Ω𝑐

𝜔𝑑 − 𝜔𝑐

𝑀𝑑 − 𝑀𝑐]
 
 
 
 
 

 (45) 
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∆𝛼𝑞𝑛𝑠 =

[
 
 
 
 
 
∆𝑎
∆𝜆
∆𝑒𝑥

∆𝑒𝑦

∆𝑖𝑥
∆𝑖𝑦 ]

 
 
 
 
 

=

[
 
 
 
 
 

(𝑎𝑑 − 𝑎𝑐)/𝑎𝑐

(𝑀𝑑 + 𝜔𝑑) − (𝑀𝑐 + 𝜔𝑐) + (Ω𝑑 − Ω𝑐) cos 𝑖𝑐
𝑒𝑑 cos𝜔𝑑 − 𝑒𝑐 cos𝜔𝑐

𝑒𝑑 sin𝜔𝑑 − 𝑒𝑐 sin𝜔𝑐

𝑖𝑑 − 𝑖𝑐
(Ω𝑑 − Ω𝑐) sin 𝑖𝑐 ]

 
 
 
 
 

 (46) 

where 𝑑 is for deputy and 𝑐 is for the chief, or reference, spacecraft orbits. The 

singular state is so named as it is not uniquely defined when either spacecraft is in a 

circular or equatorial orbit. Similarly, quasi non-singular state is not unique when the 

deputy is in an equatorial orbit. 

2.2.3 Relative Motion State Transition Matrices with Perturbations 

As it is described in Chapter 2.1.3, the perturbations play an important role for 

predicting orbital motion accurately. Similarly, it is also important to consider the 

effects of perturbations on relative motion. (Imre, 2006) discusses widely about the 

inclusion of perturbation effects on relative motion while comparing several 

geopotential terms and obtains an error of 0.3% of final separation distance after 5 

days for J2 only relative motion. A similar numerical experiment is also developed 

to investigate the effect on a widely separated spacecraft where parameters and 

assumptions are summarized in Table 2.4. 

Table 2.4 Experimental setup for numerically propagated relative motion with 

different force model configurations 

Parameter Value 

Reference Orbit SSO (LTDN 10:30) at 575 km. altitude 

Force Models for Reference Earth’s Gravity with Degree: 21, Order: 21 

Luni-Solar Third Body 

Solar Radiation Pressure 

Atmospheric Drag 

Force Models for Comparison 2 x 0 Earth’s Gravity 
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Relative Orbital Elements 

[
 
 
 
 
 
∆𝑎
∆𝑒
∆𝑖
∆Ω
∆𝜔
∆𝑀]

 
 
 
 
 

=

[
 
 
 
 
 

0°
0

0.05°
0.3°
0°

0.35°]
 
 
 
 
 

 

 

With this configuration of reference orbit and relative orbital elements, the relative 

distances range from 40 km. to 90 km. In this manner, the relative distance error of 

J2 only model for 30 days propagation is provided in Figure 2.21. 

 

Figure 2.21. Relative motion error of J2 only model for 30 days propagation 

As it can be seen from the Figure 2.21, the error grows rapidly after 1 week of 

propagation. In addition, the ratio of error with respect to relative distance can be 

seen in Figure 2.22. 
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Figure 2.22. Relative motion error ratio of J2 only model for 30 days propagation 

From Figure 2.22, the percentage of error with respect to relative distance can be 

deduced at around 2% for a 1-week propagation. As it can be deduced from above 

results, the incorporation of J2 in the relative dynamics models can handle relative 

motion of 1 week within an acceptable error margin for loosely controlled spacecraft 

clusters. 

Fortunately, incorporation of J2 in relative motion models are widely available in the 

literature (Sullivan, Grimberg, & D'Amico, 2017). In this manner, the STM for 

relative motion of spacecraft formations incorporating J2 perturbation provided by 

(Koenig, Guffanti, & D'Amico, 2016) can be re-written for quasi-circular reference 

orbits as in Eq. (47). 
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Φ(𝑡0, 𝑡𝑓)

= 

[
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0

−
7

2
𝜅𝐸𝑃𝜏 −

3

2
𝑛𝜏 1 𝜅𝑒𝑥0𝐹𝐺𝑃𝜏 𝜅𝑒𝑦0𝐹𝐺𝑃𝜏 −𝜅𝐹𝑆𝜏 0

7

2
𝜅𝑒𝑦𝑓𝑄𝜏 0 cos �̇�𝜏 − 4𝜅𝑒𝑥0𝑒𝑦𝑓𝐺𝑄𝜏 −sin �̇�𝜏 − 4𝜅𝑒𝑦0𝑒𝑦𝑓𝐺𝑄𝜏 5𝜅𝑒𝑦𝑓𝑆𝜏 0

−
7

2
𝜅𝑒𝑥𝑓𝑄𝜏 0 sin �̇�𝜏 + 4𝜅𝑒𝑥0𝑒𝑥𝑓𝐺𝑄𝜏 cos �̇�𝜏 + 4𝜅𝑒𝑦0𝑒𝑥𝑓𝐺𝑄𝜏 −5𝜅𝑒𝑥𝑓𝑆𝜏 0

0 0 0 0 1 0
7

2
𝜅𝑆𝜏 0 −4𝜅𝑒𝑥0𝐺𝑆𝜏 −4𝜅𝑒𝑦0𝐺𝑆𝜏 2𝜅𝑇𝜏 1]

 
 
 
 
 
 
 
 
 

 
(47) 

 

where the parameters are defined as follows: 

𝜏 = 𝑡𝑓 − 𝑡0, 𝜂 = √1 − 𝑒2, 𝜅 =
3

4

𝐽2𝑅⨁
2
√𝜇

𝑎7/2𝜂4
, 

𝐸 = 1 + 𝜂, 𝐹 = 4 + 3𝜂, 𝐺 =
1

𝜂2
, 𝑃 = 3 cos2 𝑖 − 1, 𝑄 = 5 cos2 𝑖 − 1,

𝑆 = sin 2𝑖 , 𝑇 = sin2 𝑖 , �̇� = 𝜅𝑄, 𝜔𝑓 = 𝜔0 + �̇�𝜏, 

𝑒𝑥0 = 𝑒 cos𝜔0 , 𝑒𝑦0 = 𝑒 sin 𝜔0 , 𝑒𝑥𝑓 = 𝑒 cos𝜔𝑓 , 𝑒𝑦𝑓 = 𝑒 cos𝜔𝑓 , 

(48) 

 

The STM given in Eq. (47) is used with quasi-nonsingular relative orbital elements 

defined in Eq. (46). In addition to STM for relative orbital element states, the control 

input matrix is also given in Eq. (49) which is defined by (Koenig & D'Amico, 2019). 

Γ(𝑡0) =
1

𝑛𝑎

[
 
 
 
 
 
 
 
 
 
 
 
 
 

2

𝜂
𝑒 sin𝑀0

2

𝜂
(1 + 𝑒 cos𝑀0) 0

−
2𝜂2

(1 + 𝑒 cos𝑀0)
0 0

𝜂 sin 𝑢0 𝜂
(2 + 𝑒 cos𝑀0) cos 𝑢0 + 𝑒𝑥0

(1 + 𝑒 cos𝑀0)

𝜂𝑒𝑦0

tan 𝑖


sin 𝑢0

(1 + 𝑒 cos𝑀0)

−𝜂 cos 𝑢0 𝜂
(2 + 𝑒 cos𝑀0) sin 𝑢0 + 𝑒𝑦0

(1 + 𝑒 cos𝑀0)
−

𝜂𝑒𝑥0

tan 𝑖


sin 𝑢0

(1 + 𝑒 cos𝑀0)

0 0 𝜂
cos 𝑢0

(1 + 𝑒 cos𝑀0)

0 0 𝜂
sin 𝑢0

(1 + 𝑒 cos𝑀0) ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (49) 

Given these relations, the final state at 𝑡𝑓 can be obtained from a given initial 

condition and control inputs at 𝑡0 through the Eq. (50). 

∆𝛼𝑓
𝑞𝑛𝑠 = Φ(𝑡0, 𝑡𝑓)∆𝛼0

𝑞𝑛𝑠 + Φ(𝑡0, 𝑡𝑓)Γ(𝑡0)[𝛿𝑉𝑅 𝛿𝑉𝑇 𝛿𝑉𝑁]𝑇 (50) 
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With this equation, it is possible to integrate delta velocities (Δ𝑉s) as control inputs 

to obtain final relative states in the form of quasi-nonsingular orbital elements. 

2.2.4 Relative Motion Prediction using Two Line Elements 

As stated in Chapter 2.2.2, relative orbital elements are used for cluster flying design 

and control. In terms of orbit control, it is also wise to use mean orbital elements as 

discussed in Chapter 2.1.4.2. Here, it is possible to make use of relative TLEs and 

extract mean elements for cluster control as well as initial relative states for cluster 

flying design. When there are no tight relative control requirements, the relative 

TLEs can be useful in operational analysis as discussed by (Kirschner M., 2001). It 

is also discussed that the accuracy of differentiating states resulting from TLEs is 

about 30-100 m. in radial and cross-track and better than 500 m. in along-track 

direction.  

In order to check the accuracy of relative TLEs, the scenario specified in Table 2.4 

is used as reference and TLEs are fit for the two spacecraft with high fidelity orbit 

propagation. Finally, 30 days propagation is performed and the resulting relative 

distance errors are presented in Figure 2.23. 
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Figure 2.23. Relative motion error of relative TLEs for 30 days propagation 

As it can be seen from these results, the errors are compatible with the ones presented 

by (Kirschner M., 2001). In addition, the ratio of relative distance error to the 

magnitude of relative distance is provided in Figure 2.24. 
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Figure 2.24. Relative motion error ratio of relative TLEs for 30 days propagation 

It can be seen that the maximum error is below 1% and it should be noted that the 

TLEs in this case are fitted for a 30 days propagation. Therefore, a reduction in error 

can be possible for a TLE fit with shorter duration. 

In the light of these discussions, relative TLEs can be used for cluster flying design 

and analysis as well as cluster control for reconfiguration purposes. Also, a safety 

distance can be set in the order of 100 m. in radial and cross-track directions.
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CHAPTER 3  

3 CLUSTER FLYING DESIGN, EVALUATION AND OPTIMIZATION 

For the design, evaluation and optimization of cluster flying, a framework which 

incorporates several methodologies is developed. The schematic of this framework 

is given in Figure 3.1 to serve as a roadmap of the overall methodology. 

 

Figure 3.1. Cluster Flying Design and Evaluation Framework 

The necessary components of this framework are; relative orbit design and 

propagation; uncertainty propagation and probability of collision calculation; cluster 

flying objective functions constraints and design variables, and finally, design space 

exploration and associated optimization. These are explained in the following 

subchapters respectively. 
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3.1 Relative Orbit Design and Propagation for Cluster Flying 

As described in Chapter 2.2.2, relative orbits can be defined by introducing small 

differences in orbital elements of a reference orbit. Once relative orbits are defined, 

the relative initial conditions and relative distances can be obtained between 

spacecraft in the cluster as described in Chapter 2.2.1. In this manner, a flowchart is 

given in Figure 3.2 to provide an oversight of this process starting from reference 

orbit to determination and evaluation of resulting trajectories for cluster flying 

design. 

 

Figure 3.2. Numerical Propagation of Relative Motion and Determination of 

Relative Distances and Probabilities of Collision 

In this approach, objective and constraint functions based on relative distances and 

probability of collision (PoC) can be evaluated with the relative position and 

covariance outputs which are generated through numerical orbit propagation for a 

given set of cluster flying variables, i.e. relative orbital elements (generated from the 

design vector) as well as spacecraft specific parameters mass 𝑚𝑙, drag area, 𝐴𝑑,𝑙, 
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drag coefficient, 𝐶𝑑,𝑙, Solar radiation pressure area, 𝐴𝑟,𝑙, and Solar radiation pressure 

coefficient, 𝐶𝑟,𝑙. 

The first step in this process is to design a mission specific reference orbit. Once the 

reference orbit (denoted by 𝑟) is designed, the specific cartesian state vector, 𝑋𝑟,0
𝐸𝐶𝐼 

(initial condition), or osculating orbital elements, 𝛼𝑟,0
𝑂𝑠𝑐, in ECI are found. Then the 

relative orbital elements, ∆𝛼𝑙
𝑂𝑠𝑐, are introduced to find initial conditions, 𝑋𝑙,0

𝐸𝐶𝐼, (state 

vectors in ECI) of all spacecraft (denoted by 𝑙) in the cluster. The transformations 

between the cartesian states and orbital elements are performed by following the 

definitions stated in Chapter 2.1.2.  

The second step in the process is the high precision numerical propagation of initial 

conditions of spacecraft in the cluster to extract trajectories, 𝑋𝑙,𝑗
𝐸𝐶𝐼, of each spacecraft 

and relative distances, ∆𝑋𝑛,𝑗
𝑅𝑇𝑁, between the spacecraft. Here, 𝑙 = 1,… ,𝑁 defines the 

spacecraft index within a N-spacecraft cluster, 𝑗 = 1,… , 𝑇 defines the time instants 

until final condition at  𝑇 and 𝑛 = 1,… ,𝑀 defines the specific combination index 

between any two spacecraft. For instance, for a 5-spacecraft cluster where 𝑁 = 5, 

the 2-combinations becomes 𝐶𝑘
𝑁 =

𝑁!

𝑘!(𝑁−𝑘)!
=

5!

2!(5−2)!
= 10. In this manner, relative 

distances between any 2 spacecraft (hence k is always 2) can be calculated with 𝑀 

combinations. In addition, spacecraft parameters such as mass, 𝑚, drag area, 𝐴𝑑, 

drag coefficient, 𝐶𝑑, solar radiation pressure area, 𝐴𝑟, solar radiation pressure 

coefficient, 𝐶𝑟, are also input to the propagation of spacecraft orbits. With this, it is 

possible to introduce differences in these parameters, for instance different mass and 

drag areas, in case of a heterogeneous distributed space system where physical 

parameters may differ. 

In real life operations, the orbit information is always associated with some 

uncertainty. This uncertainty is expressed in 6 x 6 matrix of position and velocity 

covariance as well as cross covariance terms. In the final step, the initial state 

uncertainties expressed in covariance matrix, 𝑃𝑙,0, are propagated via unscented 

transform such that the instantaneous covariance information, 𝑃𝑙,𝑗, are obtained for 
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whole trajectory. Then, this covariance information is used for instantaneous 

probability of collision, 𝑃𝑜𝐶𝑛,𝑗, calculation for all combinations. With this, it 

becomes possible to assess safety with a quantitative parameter which incorporates 

state uncertainties. The propagation of uncertainties and calculation of PoC are 

explained in detail in Chapter 3.2. 

In summary, this numerical approach provides opportunity to improve the fidelity of 

cluster flying design by incorporating high precision orbital dynamics, spacecraft 

parameters, navigation uncertainties as well as incorporating differences in 

spacecraft parameters and their effects on the dynamics of relative motion in case of 

a heterogeneous system. With this method, it is possible to do the most realistic 

design and operational analysis for spacecraft cluster flying.  However, since this 

methodology depends on complicated numerical methods, the drawback becomes 

the high computational demand. 

In order to define general boundaries of a cluster with less computational demand, a 

methodology which relies on SGP4 analytical model is also developed. Similar to 

the one provided in Figure 3.2, a flowchart is also given in Figure 3.3 to provide an 

oversight of this process starting from reference orbit to determination and 

evaluation of resulting trajectories for cluster flying design. 

 

Figure 3.3. Analytical Propagation (SGP4) of Relative Motion and Determination of 

Relative Distances 
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The first step is similar to the numerical methodology where mission specific 

reference orbit with an initial condition, 𝑋𝑟,0
𝐸𝐶𝐼, is determined initially. This initial 

condition is propagated with a high precision orbit propagator and the reference 

trajectory, 𝑋𝑟,𝑗
𝐸𝐶𝐼, is obtained for time interval 𝑗 = 1,… , 𝑇. The reference trajectory is 

used to fit reference mean orbital elements (TLEs in SGP4 case), 𝛼𝑟,0
𝑇𝐿𝐸. Then the 

relative orbital elements, ∆𝛼𝑙
𝑇𝐿𝐸, are introduced to find mean orbital elements 

(TLEs), 𝛼𝑙,0
𝑇𝐿𝐸, of all spacecraft (denoted by 𝑙) in the cluster. 

The second step in the process is the analytical propagation of mean orbital elements, 

𝛼𝑙,0
𝑇𝐿𝐸, of spacecraft in the cluster to extract trajectories, 𝑋𝑙,𝑗

𝐸𝐶𝐼, of each spacecraft and 

relative distances, ∆𝑋𝑛,𝑗
𝑅𝑇𝑁, between the spacecraft for time interval 𝑗 = 1,… , 𝑇 and 

combination index 𝑛 = 1,… ,𝑀. Here, it should be noted that the SGP4 output is 

originally provided in TEME as described in Chapter 2.1.4.1. Therefore, this TEME 

state is converted to ECI by making use of precession, 𝒫(𝑡), and nutation, 𝒩(𝑡), 

matrices as well as Greenwich true sidereal angle. In addition, the physical 

differences of spacecraft in the cluster can be input by specifying different SGP4 

drag parameters, 𝛽𝑙
∗, in case of a heterogeneous distributed space system. 

With this approach, objective and constraint functions based on relative distances 

can be evaluated with the relative position outputs which are generated through 

analytical orbit propagation (SGP4) for a given set of cluster flying variables, i.e. 

relative orbital elements (generated from the design vector). With this method, it is 

still possible to perform design and operational analyses for spacecraft cluster flying 

with no very high-fidelity requirement such as coarse mission analysis and maneuver 

planning.  Since this methodology depends on analytical orbit propagation method, 

the computational demand is not high. 

3.2 Uncertainty Propagation and Probability of Collision 

In order to perform design and operational analysis for cluster flying as realistic as 

possible, consideration of navigation uncertainties become vital. In reality, an orbit 
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determination result, i.e., orbital elements or a state vector, almost always comes 

with covariance information. Therefore, when assessing the collision or evaporation 

(when spacecraft exceeds maximum relative distance constraints) risks, the state 

uncertainty should be also considered while propagating an orbit, or initial 

conditions. Here, (Ya-zhong & Zhen, 2017) suggests uncertainty propagation can be 

performed more accurately and efficiently by employing nonlinear uncertainty 

propagators. For this, a computationally efficient and moderately precise nonlinear 

uncertainty propagation method, unscented transform, is used which is developed by 

(Julier, Uhlmann, & Durant-Whyte, A New Method for the Nonlinear 

Transformation of Means and Covariances in Filters and Estimators, 2000) and 

(Julier & Uhlmann, Reduced Sigma Point Filters for the Propagation of Means and 

Covariances Through Nonlinear Transformations, 2002). Having the state 

uncertainty information for spacecraft, it is also possible to calculate the probability 

of collision. As stated previously in Chapter 3.1, PoC provides a quantitative 

assessment for safety considerations. In the following chapters 3.2.1 and 3.2.2 the 

unscented transform and calculation of PoC are explained. 

3.2.1 Unscented Transform 

The uncertainty propagation for a state vector with N states is performed by using 

unscented transform (UT) methodology. This is achieved by propagating 2N+1 

particles (+1 is the mean and 2N particles are distributed around the mean for N 

states) which are also called sigma points derived from the state vector and, then, a 

new mean at the terminal instant is synthesized using the propagated particles. This 

process is illustrated by Figure 3.4 and described by Eq. (51) and (52). The efficiency 

of unscented transform process with its comparison to actual (Monte Carlo sampling) 

and linear covariance propagation is also represented in Figure 3.4. 
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Figure 3.4. Representation and comparison of UT by (Wan & van der Merwe, 2001) 

In the example in Figure 3.4, a two-dimensional system with 2 states (N=2) is 

considered. Here, UT captures the covariance closer to the real case with only 5 

particles (2N+1 = 5) and provides a superior performance when compared to linear 

transform of the covariance in the case of extended Kalman filter. The basic 

formulation of the UT is provided in Eq. (51). 

𝒴𝑖 = 𝑓(𝒳𝑖) 

�̅� = ∑𝑊𝑖
(𝑚)𝒴𝑖

2𝑁

𝑖=0

 

𝑃𝑦 = ∑𝑊𝑖
(𝑐){𝒴𝑖 − �̅�}{𝒴𝑖 − �̅�}𝑇

2𝑁

𝑖=0

 

(51) 
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Here, 𝑖 = 0,… , 2𝑁 represents particles for 𝑁 states, 𝑓 represents the nonlinear 

system dynamics which propagates the initial particles 𝒳𝑖 to obtain propagated 

particles, 𝒴𝑖. Then, �̅� is the synthesized mean obtained by using the weights 𝒲𝑖
(𝑚) 

defined for each particle. Similarly, final covariance, 𝑃𝑦, is synthesized by using the 

weights 𝑊𝑖
(𝑐) for each particle, and the deviation of the particles 𝒴𝑖 from the mean 

�̅�. Here many techniques such as the symmetric set and symmetric extended set are 

employed by  (Julier & Uhlmann, Unscented Filtering and Nonlinear Estimation, 

2004) for the selection of the sigma-points and the associated weights. The details of 

the UT formulation including generation of particles and calculation of weights for 

mean and covariance syntheses are provided in Eq. (52). 

𝒳0 = 𝑥 

𝒳𝑖 = 𝑥 + (√(𝑁 + 𝜆)𝑃𝑥)
𝑖
, 𝑖 = 1,… ,𝑁 

𝒳𝑖 = 𝑥 − (√(𝑁 + 𝜆)𝑃𝑥)
𝑖
, 𝑖 = 𝑁 + 1,… , 2𝑁 

𝒲0
(𝑚) = 𝜆 (𝑁 + 𝜆)⁄  

𝒲0
(𝑐) = 𝜆 (𝑁 + 𝜆)⁄ + (1 − 𝛼2 + 𝛽) 

𝒲𝑖
(𝑚) = 𝒲𝑖

(𝑐) = 1 [2(𝑁 + 𝜆)]⁄  

𝜆 = 𝛼2(𝑁 + 𝒦) − 𝑁 

(52) 

The particle with 𝑖 = 0, represents the mean and the covariance of the initial state, 𝑥, 

is represented by 𝑃𝑥. The coefficients are selected such that 𝛼 = 1, 𝒦 = 0, 𝛽 = 2. 

With this formulation, a simulation is performed to demonstrate the evolution of 

covariance and mean for orbital motion. In this simulation, covariance in RTN is set 

for position and velocity as 𝑃𝑝𝑜𝑠,0
𝑅𝑇𝑁 = 𝑑𝑖𝑎𝑔[42 7.52 62]in meters2 and 𝑃𝑣𝑒𝑙,0

𝑅𝑇𝑁 =

𝑑𝑖𝑎𝑔[0.0082 0.0072 0.00452] in (meters/second)2 respectively with 

representative values obtained from a realistic orbit determination process. For 

simulation of 1 day with step size of 240 seconds, the evolution of mean position 

error and standard deviation are provided in Figure 3.5 and in Figure 3.6 respectively. 
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Figure 3.5. Evolution of mean position error due to covariance with UT 

 

Figure 3.6. Evolution of position standard deviation with UT (black curve is the norm 

of position standard deviation; blue, red and green are the position standard deviation 

in radial (R), along-track (T) and cross-track (N) directions respectively) 
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As it can be seen from above plots, the magnitude of covariance grows linearly over 

time and the biggest uncertainty growth appears in the along-track direction. In 

addition, the error of position mean grows exponentially in a day, however, the 

magnitude of error is not significant with the given initial covariance information. 

3.2.2 Probability of Collision (PoC) 

PoC represents the likelihood that the range between two objects may become less 

than a radius 𝑅 during a close approach of 2 spacecraft. Having the state uncertainty 

information for spacecraft, it is also possible to calculate the probability of collision. 

For this, the standard collision probability assessment scheme described in the 

following is based on the formulations by (Alfriend, et al., 1999) and (Akella & 

Alfriend, 2000). Here, the combined covariance of any 2 spacecraft is transformed 

into conjunction plane (also called B plane) which is perpendicular to the relative 

velocity vector, ∆v.  Then, the 2-dimensional integral of combined uncertainty, 𝑃𝐵, 

is calculated over the circular conjunction area, Ac, which is centered at the relative 

position vector, ∆r, with a radius, 𝑅𝑐, calculated as the sum of the radii of 2 

spacecraft. This is summarized in the Figure 3.7. 
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Figure 3.7. Representation of Conjunction Plane (B-plane perpendicular to ∆v⃑⃗), 

Combined and Projected Covariance, 𝑃𝐵, and Conjunction Area 𝐴𝑐. (Krag, et al., 

2016) 

Here, xB and yB represent the major and minor axes and ф represents the angular 

position of the conjunction area, Ac. Then the probability of collision, 𝑃𝑐 , can be 

calculated through the integral given in Eq. (53) (Alfriend, et al., 1999). 

𝑃𝑐 =
1

2𝜋√‖𝑃𝐵‖
∫ ∫ 𝑒𝑥𝑝( −

1

2
ΔrB

T𝑃𝐵
−1ΔrB)

+√𝑅𝑐
2−𝑥𝐵

2

−√𝑅𝑐
2−𝑥𝐵

2

𝑑𝑦𝐵

+𝑅𝑐

−𝑅𝑐

𝑑𝑥𝐵 (53) 

 

In order to calculate this integral, (Foster & Estes, 1992) derived a model using polar 

coordinates in the conjunction plane and (Chan, 2003) developed an analytical 
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expression for the calculation of this integral. Also, (Patera, 2003) defines the 

integral which is particularly relevant for items such as defining the risk of a 

particular set of trajectories. Finally, (Alfano & Oltrogge, 2018) provides an 

overview of the types of PoC estimation techniques. In this paper, the calculation 

method of (Foster & Estes, 1992), described by Eq. (54), is adopted to reflect the 

conventional approach which satellite operators commonly practice. 

 

(54) 

In this equation, OBJ refers to combined object radius, 𝑅𝑐, 𝑅0 refers to relative 

position vector, ∆r and 𝜎𝑢 and 𝜎𝑤 are standard deviations of combined and projected 

covariance, 𝑃𝐵, projected at minor and major axes respectively. For validation and 

benchmark purposes, 2 real operational cases, provided by Combined Space 

Operations Center (CSpOC), are compared with the calculated (Eq. (54)) ones and 

presented in Table 3.1. 

Table 3.1 Validation of PoC Calculations 

Parameter Case 1 Case 2 

σx [m] 361.3 1859.8 

σy [m] 45.6 62.6 

Δr [m] 170 255 

Φ [°] 33.4 149.8 

Rc [m] 5.3 8.8 

PoC, Foster 9.632 x 10-5  4.053 x 10-5 

PoC, CSpOC 8.043 x 10-5 4.307 x 10-5 
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As it can be seen from these results, PoC can be calculated in the same order when 

compared to CSpOC’s values. Since the full assumptions of CSpOC are not known 

(such as the value of combined object radius when it is not available), small 

differences in PoC values are acceptable as long as the order is same. 

When the PoCs are considered as a risk measure for close approach events, the 

historical trend of practices at European Space Operations Center (ESOC) provided 

by (Funke, et al., 2018) is reproduced in Figure 3.8. 

 

Figure 3.8. Screening Methods and Associated Thresholds at ESOC (Funke, et al., 

2018) 

As it can be seen from above definitions at ESOC, the trigger threshold of collision 

avoidance maneuvers was set to for PoC above 10-4 until it has been specified to 

mission specific levels later. Therefore, the operators can consider the navigation 

information uncertainties and confidence in operational practice when it comes to 

setting alarm and maneuvering thresholds. 



 

 

64 

3.3 Cluster Flying Constraints, Objectives and Design Variables 

There are several constraints and objectives in the case of a mission with multiple 

spacecraft. Mission and platform characteristics, which may vary for different 

spacecraft, play an important role while realizing orbital dynamics operations. In this 

manner, it is important to consider realistic parameters, objectives and constraints 

stemming from several operational scenarios and limitations for cluster flying design 

problem. Some of the aspects, requirements and parameters for cluster flying are 

summarized in Table 3.2. 

Table 3.2 Comparison of Cluster Flying Aspects and Associated Requirements 

Aspect Requirement Parameter Action 

Safety Collision 

Avoidance 

Distance Increase 

Station Keeping Orbit Maintenance Distance to 

Reference Orbit 

Decrease 

Inter-spacecraft 

Communication 

Availability 

Visibility 

Maintenance, 

Evaporation 

Avoidance 

Line of Sight, 

Distance 

Maintain Line of 

Sight,  

Decrease Distance 

Propellant 

Consumption 

Naturally Stable or 

Feasible Orbits 

Maneuver Decrease 

Reconfigurability Cooperative 

Maneuvering 

Maneuver Increase 

 

From Table 3.2, it may be observed that there are conflicting aspects such as safety 

and inter-spacecraft communications. For safety, it is wise to increase relative 

distances, however, short ranges are better for communication performance. In 

addition, the relative distance shall not exceed a maximum range which can be called 
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as evaporation of cluster. Similarly, station keeping and safety are also conflicting in 

terms of relative distance. For station keeping, the spacecraft shall be kept as close 

as possible to the mission specific reference orbit therefore it may cause cluster to 

shrink and reduce relative distances. Also, it is wise to reduce propellant 

consumption however reconfigurability is important for cluster flying and therefore 

these two are conflicting objectives.  

In order to design a cluster which maximizes safety, station keeping and inter-

spacecraft communications relative distance-based objectives and constraints can be 

defined. In addition, probability of collision is also a good measure for safety as 

described in Chapter 3.2.2. However, it is necessary to analyze the geometry of 

relative orbits and covariance for both cases. 

As described in Chapter 2.2.1, a full harmonic closed form solution is possible, 

however, the cartesian formulation does not provide an insight into the geometrical 

aspects of relative motion. Here, a formulation of linearized relative motion based 

on relative orbital elements with relative eccentricity and inclination vectors is 

provided by (Montenbruck, Kirschner, D'Amico, & Bettadpur, 2006) and (D'Amico 

& Montenbruck, 2006). This formulation which is a general closed form solution of 

HCW equations by using the mean argument of latitude, 𝑢, as an independent 

variable is given in Eq. (55). 

∆𝑅 = ∆𝑎 − 𝑎𝛿𝑒 cos(𝑢 − 𝜑) 

∆𝑇 = 𝑎∆𝑙 −
3

2
∆𝑎(𝑢 − 𝑢0) + 2𝑎𝛿𝑒 sin(𝑢 − 𝜑) 

∆𝑁 = 𝑎𝛿𝑖 sin(𝑢 − 𝜃) 

(55) 

where ∆𝑙 = ∆𝑢 + ∆Ωsin 𝑖 is the relative mean longitude, 𝜑 = atan(∆𝑒𝑦/∆𝑒𝑥) and 

𝜃 = atan(∆𝑖𝑦/∆𝑖𝑥) are relative perigee and argument of latitude respectively. Here, 

𝛿𝑒 or 𝛿𝑖 are the magnitudes of the eccentricity and inclination vectors which are also 

defined in Eq. (46). With this formulation, it is not only possible to interpret 

geometrical implications of but also have a powerful tool for cluster flying design. 

In the case of close relative orbits assuming ∆𝑎 = ∆𝑙 = 0, the Eq. (55) becomes 
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∆𝑅 = −𝑎𝛿𝑒 cos(𝑢 − 𝜑) 

∆𝑇 = 2𝑎𝛿𝑒 sin(𝑢 − 𝜑) 

∆𝑁 = 𝑎𝛿𝑖 sin(𝑢 − 𝜃) 

(56) 

From Eq. (56), it can be deduced that the relative motion within the plane (or in- 

plane) become an ellipse with semimajor axis 2𝑎𝛿𝑒 in along-track and semi-minor 

axis 𝑎𝛿𝑒 in radial directions for close relative orbits where ∆𝑎 = ∆𝑙 = 0. In addition, 

the gradual increase of along-track separation is also canceled by selecting ∆𝑎 = 0. 

Similarly, out of plane motion can be described by 𝑎𝛿𝑒 in radial and 𝑎𝛿𝑖 in cross-

track directions. These geometries are presented in the Figure 3.9. 

 

Figure 3.9. In-plane (Radial and Along-track) and out of plane (Radial and Cross-

track) relative motion based on relative eccentricity and inclination vectors 

(D'Amico & Montenbruck, 2006). 
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From the Eq. (56) and Figure 3.9, it can be interpreted that it is possible to investigate 

in-plane and out of plane motion separately and understand geometrical applications 

such as possible minimum and maximum distances by using relative eccentricity and 

inclination vectors as design parameters. For instance, a minimum distance can be 

ensured by parallel separation of relative eccentricity and inclination vectors through 

specifying 𝜑 = 𝜃. This condition would ensure a minimum distance in ∆𝑅 when 𝑢 =

𝜑 + 𝑘𝜋 where 𝑘 = 0,1,2… and ∆𝑇 = 0. Similarly, it is possible to ensure a distance 

in ∆𝑁 when 𝑢 = 𝜑 +
𝑘

2
𝜋  and the separation in radial direction disappears, ∆𝑅 = 0.  

In this manner, it is especially important to ensure a minimum distance in out of 

plane described by radial and cross-track directions (or RN plane) since the 

uncertainties in along-track direction are much higher as described in Chapter 3.2.1 

and shown in Figure 3.6. To sum up, the relative maximum and minimum distances 

∆𝑅, ∆𝑇 and ∆𝑁 can be related with ∆𝑒𝑥,𝑦 and ∆𝑖𝑥,𝑦 vectors between the spacecraft as 

described in Eq. (57). 

[
∆𝑅
∆𝑇
∆𝑁

]

𝑚𝑖𝑛,𝑚𝑎𝑥

= 𝑓(𝑎, ∆𝑒𝑥,𝑦, ∆𝑖𝑥,𝑦) (57) 

Here, minimum distance relation for radial and cross-track directions is derived by 

(Eckstein, Rajasingh, & Blumer, 1989)  and given in Eq. (58). 

∆𝑅𝑁𝑚𝑖𝑛

=
√2𝑎|∆𝑒||∆𝑖| cos(𝜃 − 𝜑)

{|∆𝑒|2 + |∆𝑖|2 + √|∆𝑒|4 + |∆𝑖|4 − 2|∆𝑒|2|∆𝑖|2 cos 2(𝜃 − 𝜑)}
1/2

 
(58) 

By using Eq. (55), (56) and (58) operational constraints on station-keeping, safety 

and inter-spacecraft communications can be introduced by defining bounds on 

minimum and maximum relative distances between the spacecraft based on realistic 

parameters, objectives and constraints stemming from several operational scenarios 

and limitations. For instance, a minimum distance constraint can be defined to ensure 

the safety through collision avoidance and a bound on maximum distance can be 

defined to ensure inter-spacecraft link availability through evaporation (or maximum 
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range violation) for the cluster. Station-keeping can be also ensured if the minimum 

and maximum distance constraints are defined such that the deviations from the 

reference orbit are within the acceptable limits. The constraints derived from these 

considerations are summarized in Eq. (59). 

Eq. (58):∆𝑅𝑁𝑚𝑖𝑛 = 𝑓(𝑎, ∆𝑒𝑥,𝑦, ∆𝑖𝑥,𝑦) ≥ 𝑑𝑚𝑖𝑛

𝛥𝑅𝑛,𝑗
2 + 𝛥𝑁𝑛,𝑗

2 ≥ 𝑑𝑚𝑖𝑛
2

𝛥𝑅𝑛,𝑗
2 + 𝛥𝑇𝑛,𝑗

2 + 𝛥𝑁𝑛,𝑗
2 ≤ 𝑑𝑚𝑎𝑥

2

 (59) 

With these constraints, it is possible to ensure a minimum distance, 𝑑𝑚𝑖𝑛, in radial – 

cross-track (RN) plane and a maximum range, 𝑑𝑚𝑎𝑥, in 3 dimensions. With the first 

relation of Eq. (59), initial ∆𝑒𝑥,𝑦 and ∆𝑖𝑥,𝑦 vectors are designed to ensure ∆𝑅𝑁𝑚𝑖𝑛 ≥

𝑑𝑚𝑖𝑛 and the second relation is for trajectory. Here, the reason for introducing 

minimum distance constraint only on the RN plane is to ensure a safe distance 

between any spacecraft without relying on the distance in along-track direction for 

which the navigation uncertainties are the highest when compared to other directions 

as described previously. This condition may be visualized from Figure 3.10. 

 

Figure 3.10. Out of plane (Radial and Cross-track, Left) and three dimensional (right) 

representations of relative motion with uncertainty of chief orbit where a minimum 

distance is ensured in RN plane. (Mueller, Griesemer, & Thomas, 2013) 

If ∆𝑙 ≠ 0 then the minimum and maximum distance constraints may also be written 

in 3 dimensions as described in Eq. (60). 
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𝑑𝑚𝑖𝑛
2 ≤ 𝛥𝑅𝑛,𝑗

2 + 𝛥𝑇𝑛,𝑗
2 + 𝛥𝑁𝑛,𝑗

2 ≤ 𝑑𝑚𝑎𝑥
2
 (60) 

When specifying boundaries on relative distances, the requirements scaling 

introduced by (Gill, 2011) for relative motion guidance, control and navigation can 

be considered. These scaling laws are summarized in Table 3.3. Based on this table, 

minimum distance or separation constraint can be specified as 100 m. by assuming 

a relative navigation accuracy of cm. levels (Persson, D'Amico, & Harr, 2010). 

Table 3.3 Scaling Laws for Guidance, Navigation and Control Parameters for 

Formation Flying (Gill, 2011). 

Parameter Variable/Relation Sample Scenario 

Spacecraft Separation 

Requirement 

𝑑𝑙 100 m. 

Control Window Size 𝑑𝑐𝑤 = 0.1𝑑𝑙 10 m. 

Control Accuracy 

Requirement 

𝑑𝑐 = 0.1𝑑𝑐𝑤 1 m. 

Relative Navigation 

Accuracy Requirement 

𝑑𝑛 = 0.1𝑑𝑐 0.1 m. 

 

Finally, constraints on design variables, 𝜌𝑙, for each spacecraft, 𝑙 can be also defined 

as provided in Eq. (61). 

𝜌𝑚𝑖𝑛 ≤ 𝜌𝑙 ≤ 𝜌𝑚𝑎𝑥 (61) 

Using Eq. (59), Eq. (60) and Eq. (61), a design space based on the relative orbit 

elements and relative distance constraints can be generated. 

Depending on the mission specific cases and requirements of the cluster flying, 

different objective functions can be defined based on relative distances or parameters 

such as probability of collision to maximize the station keeping and/or safety. For 

the station-keeping, an objective function which would minimize the relative 

distances to the reference orbit can be defined as described in Eq. (62). 
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∑∑(𝛥𝑅𝑙,𝑗
2 + 𝛥𝑇𝑙,𝑗

2 + 𝛥𝑁𝑙,𝑗
2 )

𝑇

𝑗=1

𝑁

𝑙=1

 (62) 

This objective function, Eq. (62), will imply that any deviation, or distance, of each 

spacecraft, 𝑙, at each discrete time instant, 𝑗, from the reference orbit would increase 

the cost. Therefore, the total cost would become the sum of the deviations of all 

spacecraft, 𝑙 = 1, 2, . . . , 𝑁, over the simulated time interval which is discretized as 

𝑗 = 1, 2, . . . , 𝑇. 

Similarly, the objective function which would maximize the safety can be written 

with the probability of collision as described in Eq. (63). 

∑ ∑𝑃𝑜𝐶𝑛,𝑗

𝑇

𝑗=1

𝑀

𝑛=1

 (63) 

This objective function, Eq. (63), will imply that the probability of collision between 

any two spacecraft, with combination index 𝑛 = 1, 2, . . . , 𝑀 at each time instant, 𝑗, 

would increase the cost. Therefore, the total cost would become the sum of the 

probabilities of collision between any two spacecraft over the simulated time interval 

𝑗 = 1, 2, . . . , 𝑇. 

After specifying the objective functions, design variables which would be a selected 

set of relative orbital elements and their minimum and maximum bounds can be also 

defined. Initially, design variables can be specified as 𝜌 = [𝛥𝑒 𝛥𝑖 𝛥𝛺 𝛥𝜔]. 

With these variables relative orbit configurations can be formed in terms of relative 

eccentricity and relative inclination vectors which are defined by Δe, Δω and Δi, ΔΩ 

respectively. Regardless of whether the reference orbit is circular or not, design 

vectors can be generated with minimum and maximum bounds depending on the 

mission characteristics. However, it is important to define these boundaries such that 

the sensitivity of the objective function would be in the same order for different 

ranges of design variables. 

To illustrate this procedure, a near circular Sun-synchronous reference orbit at 685 

km (mean) altitude and 10:30 Local Time Descending Node (LTDN) with orbital 
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elements 𝑒 = 0.0022, 𝑖 = 98.124°, Ω = 86.717°, 𝜔 = 176.409°  is considered as a 

reference example. Here, the maximum separations between a circular reference 

orbit and derived relative orbits can be quantified as described by reduced form of 

the Eq. (56) given in Eq. (64). 

𝛥𝑅𝑚𝑎𝑥 ≅ 𝑎𝛿𝑒 

𝛥𝑇𝑚𝑎𝑥 ≅ 2𝑎𝛿𝑒 

𝛥𝑁𝑚𝑎𝑥 ≅ 𝑎𝛿𝑖 

(64) 

where δe and δi are the magnitudes of the eccentricity and inclination vectors. Here, 

it should be noted that, the contribution of relative orbital elements to the maximum 

distances shall be in the same order. In this manner, the minimum and maximum 

bounds on the design vector, 𝜌𝑙 = [𝛥𝑒𝑙 𝛥𝑖𝑙 𝛥𝛺𝑙 𝛥𝜔𝑙]
𝑇 ,are specified as 

follows:  

−0.000525 ≤ 𝛥𝑒𝑙 ≤ 0.000525
−0.075° ≤ 𝛥𝑖𝑙 ≤ 0.075°

−0.075° ≤ 𝛥𝛺𝑙 ≤ 0.075°

−0.03° ≤ 𝛥𝜔𝑙 ≤ 0.03°

 (65) 

With this design space, the order of the maximum distances would be less than 50 

km. when vector magnitudes are calculated for RTN directions. In order to check the 

relative effectiveness, or sensitivity, of the design variables, a random set of 1000 

samples within the design space is generated initially. Then the (scaled) objective 

function values for Eq. (62) are calculated for 5 spacecraft each having 4 relative 

orbital elements as design variables. The result of the sensitivity analysis for the 

sampled design space is shown in the Figure 3.11. 
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Figure 3.11. Relative Effectiveness of the Design Variables for 5 Spacecraft over a 

Design Space of 1000 Samples. Each row indicates the specific spacecraft, while the 

column indicates relative orbital element, 𝛥𝑒, 𝛥𝑖, 𝛥Ω and 𝛥𝜔 respectively. 

In Figure 3.11, rows represent each spacecraft and columns represent the relative 

orbital elements for the specific spacecraft. For a specific row, i.e. spacecraft, each 

subplot shows the objective function values for a specific relative orbital element in 

the order of 𝛥𝑒, 𝛥𝑖, 𝛥Ω and 𝛥𝜔. From these figures, it can be seen that the changes 

in each design variables, or the relative orbital elements, have comparable effects on 

the scaled objective function. In this example, cross-track elements 𝛥𝑖 and 𝛥Ω have 

wider bounds, therefore, the sensitivity for these elements are relatively higher. 

However, since the orbit is near circular, sensitivity to design variable 𝛥𝜔 is 

relatively lower. It should be noted that these sensitivities are valid for a specific 

objective function, design variables and the bounds on design variables. If the 

minimum and maximum bounds on 𝛥𝜔 were larger then the sensitivity to the 

changes in this design variable would have been higher. 
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3.4 Design Space Exploration and Optimization 

Since the objectives and constraints are highly nonlinear and the problem is non-

convex, a design space exploration based technique is developed to solve the cluster 

flying design problem. Here, the design space is defined by the boundaries on the 

design variables as described in Chapter 3.3. Then, a design space exploration is 

performed within this design space through generating a population of many samples 

(in the order of thousands) and evaluating the objective and constraint functions for 

each sample. The samples which are satisfying the constraints, i.e., feasible 

solutions, are filtered and the one providing the lowest cost value is selected as the 

initial condition. Finally, this filtered and selected initial condition is further 

optimized. The steps of the process are summarized in Figure 3.12. 

 

Figure 3.12. Optimization Algorithm Flowchart. 

3.4.1 Sampling of Design Space 

In the first step of the optimization process, i.e. generation of many samples from 

design variables, selecting the right sampling method is very important in terms of 

finding feasible solutions. In addition, the sampling method is related to the quality 

of the results and length of simulation time. In order to represent the design space 
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well enough and detect the regions where feasible solutions are located, several 

methodologies can be utilized. Amongst them, Monte Carlo sampling is the most 

common methodology. When Monte Carlo sampling is utilized, the computer 

generates a random number between 0 and 1 for each sample using a uniform 

distribution. Then, this number is assigned to a value using cumulative distribution 

function (CDF) which is specific for the problem. This process is illustrated in the 

Figure 3.13. 

 

Figure 3.13. Monte Carlo Implementation in Computers. 

From the Figure 3.13, it can be deduced that entirely random four numbers (on y-

axis) are assigned to a specific value (in x-axis), which would be the sample, using 

the cumulative probability distribution. Since the chance of having any number from 

0 to 1 on y-axis is same for all samples, any sample is generated in a totally random 

manner and it may fall anywhere within the range of input distribution. Also, new 

sample points are generated without taking into account the previously generated 
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sample points. However, the more likely outcomes are in the range where the 

cumulative curve is the steepest. If there are not enough samples, this would cause 

that the values in the outer ranges (red regions) of the distribution are not represented 

in the samples and therefore they are not evaluated in the simulations. In order to 

overcome this problem, very large number of samples is needed to have a good 

representation of probability distribution. However, as the whole process is fully 

random (memoryless), it is not possible to recreate a same or similar population from 

one simulation to another. 

In order to explore the design space with reasonable sample number and overcome 

the difficulties of Monte Carlo methodology, Latin Hypercube Sampling (LHS) 

method which is developed by (Mckay, Beckman, & Conover, 1979) and 

implemented by (Iman, Davenport, & Zeigler, 1980) and (Iman, Helton J., & 

Campbell, 1981) is utilized. The basic idea of this method is to make sampling point 

distribution close to probability density function (PDF) by stratification of the input 

probability distribution. Stratification divides the cumulative probability distribution 

into equal intervals and then only one sample is randomly taken from each interval 

or “stratification”. This process is schematically shown in Figure 3.14. 
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Figure 3.14. Latin Hypercube Sampling Implementation. 

As it can be seen from Figure 3.14, there is only sample per stratification for LHS 

and the samples are more widely distributed (between -2 and 2) when compared to 

Monte Carlo approach (between -1 and 1) shown in Figure 3.13.  

In terms of more than one dimensional space, a square grid containing sample 

positions is a Latin Square if and only if there is only one sample in each row and 

column. In this manner, a Latin Hypercube is the generalization of this concept to 

multi-dimensional space, where each sample is the only one in each axis-aligned 

hyperplane containing it. For two dimensions, a comparison is provided in Figure 

3.15 for LHS and Monte Carlo sampling methodologies. 
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Figure 3.15. LHS and Monte Carlo Sampling Example for Two-Dimensional Space. 
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As it can be seen from Figure 3.15, there is at least one sample for each grid for the 

LHS and therefore LHS is more effective in sampling the whole design space when 

compared to Monte Carlo methodology for same number of samples. In this manner, 

with the use of LHS, design space can be well represented and explored with a 

smaller number of runs when compared to a Monte Carlo simulation (Xin, 2015). 

Similarly, LHS samples can be generated for higher-dimensional space and because 

of its effectiveness, LHS methodology is preferred for sampling the design space of 

cluster flying problem. 

3.4.2 Finding the Right Sample Size and Optimization 

Another key point for design space exploration and optimization is to select the right 

sample size which would affect the number of feasible solutions over the design 

space. To find the right number of sample size, several runs can be run and the ratio 

of feasible solutions for each of the runs divided by the sample size, i.e. # of solutions 

/ sample size, can be checked. Convergence of this ratio indicates that the right 

sample size is obtained. To illustrate, 15 simulations are run for same problem with 

10 spacecraft with 4 design variables (𝛥𝑒, 𝛥𝑖, 𝛥Ω and 𝛥𝜔) (40 design variables in 

total) and for each population with sample sizes 250, 500, 750, 1000, 1500, 2000, 

2500, 3000, 3500, 4000 and 4500. Then the average number of feasible solutions for 

each of the runs is divided by the sample size and the result is plotted against sample 

size in Figure 3.16. 
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Figure 3.16. Number of Feasible Solutions over Sample Size with respect to Sample 

Size. 

It can be seen in the Figure 3.16 that average number of feasible solutions over 

sample size converges after 1000 samples for 10 spacecraft configuration which 

comes with 40 design variables. In this manner, it can be concluded for this example 

that 25 samples per design variable can be generated using LHS method to find 

feasible solutions. 

After running the simulations for the generated population of 1000 samples, the 

objective and constraint functions are evaluated and feasible solutions are identified. 

A sample result and identified feasible solutions are shown in the Figure 3.17. 
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Figure 3.17. Feasible Solutions (red points) from 1000 Samples in the 1st Iteration of 

Design Space Exploration. 

In the Figure 3.17, it can be seen that 4 feasible solutions (circled) are identified. 

Based on the objective function values of feasible solutions, the design point (red 

circle) is selected such that the objective function has the minimum value. Then 

another design space exploration is performed with a population of 1000 samples 

around the selected design point for further optimization. Here, the new design space 

is generated such that the design variables vary within the ±20% range of the 

optimized design point. Similarly, the simulations are run again for the new 

population and then feasible solutions are filtered. A result for the second iteration 

of design space exploration is shown in Figure 3.18. 
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Figure 3.18. Feasible Solutions (red points) from 1000 Samples in the 2nd Iteration 

of Design Space Exploration. 

As it can be seen in the Figure 3.18, there are many feasible solutions (~100s) this 

time. Here, the sample with minimum objective function value (circled) from the 

second iteration of the design space exploration can be selected as the final design 

point. The optimization can be stopped when this final design point improves the 

objective function value when compared to previous iteration. 
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CHAPTER 4  

4 CLUSTER FLYING MAXIMIZING STATION KEEPING OBJECTIVE 

In this chapter, cluster flying design methodology explained in Chapter 3 is applied 

for passively safe long-term multi-spacecraft cluster flying design maximizing 

station-keeping objective. In this approach, design variables are selected as relative 

mean orbital elements for each spacecraft. These relative orbital elements which are 

derived from a reference TLE are propagated through SGP4 propagator with no 

uncertainty as described in Figure 3.3. In addition, the objective function is specified 

as defined by Eq. (62) and constraints are specified as defined by Eq. (59) and Eq. 

(61). In addition to these objectives and constraints, the problem can be formulated 

as a multi-objective optimization problem considering the validity duration and 

spacecraft number in the cluster. As it can be predicted that increasing the number 

of spacecraft would increase the necessary distances and therefore the total cost of 

the objective function. In addition, long duration and more spacecraft configurations 

would yield less solutions than the cases with short duration and less spacecraft. In 

order to demonstrate such situations and the effectiveness of the methodology, a 

problem whose assumptions and parameters are summarized in Table 4.1 is set. 

Table 4.1 Cluster Flying Design Formulation with Station-Keeping Objective 

Parameter Specification 

Objective Function 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑∑
(𝛥𝑅𝑙,𝑗

2 + 𝛥𝑇𝑙,𝑗
2 + 𝛥𝑁𝑙,𝑗

2 )

𝑑𝑚𝑎𝑥
2

𝑇

𝑗=1

𝑁

𝑙=1

 

Constraint Function(s) Eq. (59) 

Bounds on Design Variables Eq. (65) 

Propagator Analytical (SGP4) 
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Inputs and Assumptions Reference Orbit SSO, LTDN 10:30 at 

685 km altitude 

Spacecraft Number 3, 4, 6, 8 and 10 

𝑑𝑚𝑖𝑛 in RN Plane 0.1 km 

𝑑𝑚𝑎𝑥 in RTN Plane 50 km 

𝛥𝑎 Difference 0 km 

Physical Differences Defined by 𝛥𝛽𝑙
∗ = 0 

Duration, 𝑇𝑚𝑎𝑥 1, 3, 5, 7 and 10 days 

Step Size 10 sec 

Sample Number 2000 

 

In this problem, the objective function given in Eq. (62) is scaled with the 𝑑𝑚𝑎𝑥. As 

for the mission parameters, a Sun-Synchronous LTDN 10:30 orbit at 685 km is 

specified. Also, spacecraft numbers are varied from 3 to 10 and simulation duration 

is varied from 1 to 10 days. The physical differences through drag parameters, 𝛥𝛽𝑙
∗, 

are not introduced at this stage in order to demonstrate the effect of only spacecraft 

number and validity duration. While minimum and maximum distance constraints 

are set as 0.1 km and 50 km respectively, the semimajor axis difference, 𝛥𝑎, is set to 

0 in order to cancel the gradual increase of along-track separation. Finally, sample 

number is chosen as 2000 to have a good representation of design space and generate 

several solutions for comparison. Some sample results of an optimized solution for 

5-spacecraft cluster and 5 day-duration are shown in Figure 4.1 and Figure 4.2. 
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Figure 4.1. Feasible Solutions (red points) from 2000 Samples for 5-Spacecraft 

Cluster and 5 Day-Duration. 

Figure 4.1, it can be seen that plenty of feasible solutions (red points) are found.  

Here, there are 356 feasible solutions which is 18% of 2000 samples. Based on the 

objective function values of feasible solutions, the design point is selected such that 

the objective function has the minimum value of 0.023. The resulting relative 

distances for 𝐶2
5 = 10 combinations are shown in Figure 4.2. In the figure, each 

discrete time interval, for example 0 to 1, 1 to 2, etc. until 9 to 10, corresponds to 5-

day simulation result for each combination of Spacecraft 1 and 2, Spacecraft 1 and 

3, etc. until 10th combination of Spacecraft 4 and 5. 
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Figure 4.2. Cluster Flying 5 Day-Result for 5 Spacecraft with Station-Keeping 

Objective. 

From Figure 4.2, it may be concluded that the 5-spacecraft cluster flying design does 

not violate the minimum and maximum distance constraints of 0.1 km and 50 km 

respectively over 5-day period. The minimum distance in RN occurs as 112.7 m. and 

maximum distance occurs as 13.1 km. in the cluster. In addition to relative distance 

plots, the relative motion of spacecraft in Radial, Along-Track and Cross-Track 

(RTN) are shown in Figure 4.3, Figure 4.4, Figure 4.5 and Figure 4.6. In the plots, 

‘*’ sign marks the initial condition, 𝑇0, and ‘o’ sign marks the final condition, 𝑇𝑓. 
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Figure 4.3. Along-Track - Radial Distances of 5 Day-Result for 5 Spacecraft Cluster 

with Station-Keeping Objective. 

The Along-Track – Radial plot for 5-spacecraft cluster shows that there is a radial 

separation between the spacecraft when along-track distance disappears. As the 

biggest uncertainty occurs in along-track direction, this provides an inherent safety 

for the cluster. Although the plot shows 5-day trajectories, there are regions where 

the red, blue, dark blue or yellow relative orbits may still intersect when along-track 

separation begins diminishing. In this case, it can be seen in Figure 4.4 that there is 

always a distance in cross-track between these relative orbits. In this way, a 

separation either in radial or cross rack direction is always ensured within the cluster. 
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Figure 4.4. Along-Track – Cross-Track Distances of 5 Day-Result for 5 Spacecraft 

Cluster with Station-Keeping Objective. 

 

Figure 4.5. Cross-Track - Radial Distances of 5 Day-Result for 5 Spacecraft Cluster 

with Station-Keeping Objective. 
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Figure 4.6. Radial – Along-Track – Cross-Track Distances of 5 Day-Result for 5 

Spacecraft Cluster with Station-Keeping Objective. 

Finally, the boundaries are realized within a 5 x 10 x 12 km3 volume for 5-spacecraft 

5-day duration cluster. In this case, theoretical maximum distance would be around 

16 km. where realized maximum distance of 13.1 km. between spacecraft is 

reasonable. In order to see the effects of increased number of spacecraft and duration, 

the results of another optimized solution for 10-spacecraft cluster and 10 day-

duration are shown in Figure 4.7 and Figure 4.8. In this case, 4000 samples are used 

since there was no feasible solution found for 2000 samples. 
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Figure 4.7. Feasible Solutions (red points) from 4000 Samples for 10-Spacecraft 

Cluster and 10 Day-Duration. 

From Figure 4.7, it can be seen that only one solution (red point) is found which is 

0.025% of 4000 samples. For this design point, the objective function has the value 

of 0.358. The resulting relative distances for 𝐶2
10 = 45 combinations are shown in 

Figure 4.8. In the figure, each discrete time interval, for example 0 to 1, 1 to 2, etc. 

until 44 to 45 corresponds to 10-day simulation result for each combination of 

Spacecraft 1 and 2, Spacecraft 1 and 3, etc. until 45th combination of Spacecraft 9 

and 10. 
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Figure 4.8. Cluster Flying 10 Day-Result for 10 Spacecraft with Station-Keeping 

Objective. 

From Figure 4.8, it can be concluded that the 10-spacecraft cluster flying design does 

not violate the minimum and maximum distance constraints of 0.1 km and 50 km 

respectively over 10-day period. The minimum distance in RN occurs as 101 m. and 

maximum distance occurs as 40.8 km. in the cluster. In addition to relative distances, 

the relative motion of spacecraft in Radial, Along-Track and Cross-Track (RTN) are 

shown in Figure 4.9, Figure 4.10, Figure 4.11 and Figure 4.12. In the plots, ‘*’ sign 

marks the initial condition, 𝑇0, and ‘o’ sign marks the final condition, 𝑇𝑓. 
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Figure 4.9. Along-Track - Radial Distances of 10 Day-Result for 10 Spacecraft 

Cluster with Station-Keeping Objective. 

 

Figure 4.10. Along-Track – Cross-Track Distances of 10 Day-Result for 10 

Spacecraft Cluster with Station-Keeping Objective. 
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Figure 4.11. Cross-Track - Radial Distances of 10 Day-Result for 10 Spacecraft 

Cluster with Station-Keeping Objective. 

 

Figure 4.12. Radial – Along-Track – Cross-Track Distances of 10 Day-Result for 10 

Spacecraft Cluster with Station-Keeping Objective. 
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Similar to the previous example of 5 spacecraft cluster, a separation either in radial 

or cross rack direction is always ensured when along-track distance diminishes 

within the cluster providing an inherent safety. From Figure 4.9 and Figure 4.10, it 

can be also deduced that specific orientations of eccentricity and inclination vectors 

result in two 5-spacecraft groups within 10-spacecraft cluster separated by an along-

track offset. Although the gradual separation of along-track is canceled via ∆𝑎 = 0,  

an increase in maximum distances is still observed in Figure 4.8. In this case, a 

control for along-track separation may be necessary to maintain the cluster. 

To understand how difficult is to obtain a solution, percentage of solutions with 

respect to problem variables such as number of spacecraft, 𝑁, and duration, 𝑇𝑚𝑎𝑥, 

are plotted in Figure 4.13 and Figure 4.14 for the problem defined in Table 4.1. Here, 

as the objectives for the number of solutions as well as spacecraft number and 

duration are to be maximized, all values for these variables are plotted as positive. 

 

Figure 4.13. Spacecraft Number, 𝑁 vs. Percentage of Number of Solutions for 

fixed Duration, 𝑇𝑚𝑎𝑥. 
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Figure 4.14. Duration, 𝑇𝑚𝑎𝑥 vs. Percentage of Number of Solutions for fixed 

Spacecraft Number, 𝑁. 

As it can be seen from the Figure 4.13 and Figure 4.14 that there is exponentially 

decrease in number of solutions if the cluster flying duration and the number of 

spacecraft in the cluster are increased. It is also seen that it is more likely to find 

solutions and optimize for clusters with 3 to 6 spacecraft.  

To demonstrate the multi-objective behavior of the problem, several results are also 

obtained for the objective function value with respect to problem variables of 

spacecraft number, 𝑁, and duration, 𝑇𝑚𝑎𝑥. The results are plotted in Figure 4.15 and 

Figure 4.16. In this case, as the objective functions are minimized, the spacecraft 

number and duration are plotted as negative values. 
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Figure 4.15. Spacecraft Number, 𝑁 vs. Objective Function Value for fixed 

Duration, 𝑇𝑚𝑎𝑥. 

 

Figure 4.16. Duration, 𝑇𝑚𝑎𝑥 vs. Objective Function Value for fixed Spacecraft 

Number, 𝑁. 
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From Figure 4.15 and Figure 4.16, it can be seen that increasing cluster keeping 

duration requirement and number of spacecraft in the cluster increases the objective 

function value. This is due to the fact that the clusters’ volume needs to be increased 

for more spacecraft and longer duration. It is also seen that pareto front curves can 

be obtained for conflicting objectives against number of spacecraft or duration. 

As mentioned previously, one of the main motivations for the developed cluster 

flying design methodology is to analyze the time validity of clusters. For identifying 

time bounds, the cluster can be propagated further and minimum distances can be 

checked. Here, a sample problem of 5 spacecraft cluster is designed for 15 days and 

propagated for 20 days. From 16 feasible solutions which is 0.8% of 2000 samples, 

the design point is selected such that the objective function has the minimum value 

of 0.239. Resulting relative distances plot is shown in Figure 4.17.  

 

Figure 4.17. 20 Day Propagation Result for 15-day 5 Spacecraft Cluster Flying with 

Station-Keeping Objective. 
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When compared to results in Figure 4.1 and Figure 4.2, there is a dramatic decrease 

in solution number (18% to 0.8%) and the cluster expands where boundaries are 

realized within a 7.1 x 20 x 16 km3 volume. Here, minimum distance in RN becomes 

76 m. after 19.8 days propagation where the distance in RTN is 543 m. Also, 

minimum distance in RTN occurs as 253 m. where the distance in RN is 119 m. The 

maximum distance is around 35 km. From these results, it can be deduced that in 

some instances, 5 spacecraft clusters may be flown for up to 20 days without 

violating constraints for the problem in Table 4.1. Similarly, based on reference orbit 

and constraint definitions, several configurations and their validities can be found. 

Finally, it is also possible to incorporate physical differences for simulating 

heterogeneous system by introducing differences in drag parameters 𝛥𝛽𝑙
∗. In this 

case, the problem defined in Table 4.1 is re-written in Table 4.2. 

Table 4.2 Cluster Flying Design Formulation for Heterogeneous Systems 

Parameter Specification 

Objective Function 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑∑
(𝛥𝑅𝑙,𝑗

2 + 𝛥𝑇𝑙,𝑗
2 + 𝛥𝑁𝑙,𝑗

2 )

𝑑𝑚𝑎𝑥
2

𝑇

𝑗=1

𝑁

𝑙=1

 

Constraint Function(s) Eq. (59) 

Bounds on Design Variables Eq. (65) 

Propagator Analytical (SGP4) 

Inputs and Assumptions Reference Orbit SSO, LTDN 10:30 at 

685 km altitude 

Spacecraft Number 5 

𝑑𝑚𝑖𝑛 in RN Plane 0.1 km 

𝑑𝑚𝑎𝑥 in RTN Plane 50 km 

Physical Differences 

(Defined by 𝛥𝛽𝑙
∗) 

−0.5 × 𝛽𝑟𝑒𝑓
∗  < 𝛥𝛽𝑙

∗ < 

0.5 × 𝛽𝑟𝑒𝑓
∗  

Simulation Duration 20 days 

Step Size 10 sec 
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In this problem, physical differences are introduced through drag parameters 𝛥𝛽𝑙
∗ 

and the duration is specified as 20 days as a continuation of the previous problem of 

5-spacecraft 20-day homogeneous cluster. The results of the feasible solutions for 5-

spacecraft heterogeneous cluster and 20 day-duration are shown in Figure 4.18 and 

Figure 4.19. 

 

Figure 4.18. Feasible Solutions (red points) from 3000 Samples for 5-Spacecraft 

Heterogeneous Cluster and 20 Day-Duration. 

In Figure 4.18, it can be seen that only 1 solution (red point), which is 0.03% of 3000 

samples, is found. When compared to the case in Figure 4.17, there is dramatic 

decrease in solution number (0.8% to 0.03%) and the objective function value is 

doubled from 0.239 to 0.550. The resulting relative distances for 𝐶2
5 = 10 

combinations are shown in Figure 4.19. In the figure, each discrete time interval, for 

example 0 to 1, 1 to 2, etc. until 9 to 10, corresponds to 30-day simulation result for 

each combination. 
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Figure 4.19. Cluster Flying 20 Day-Result for 5 Spacecraft Heterogeneous System 

with Station-Keeping Objective. 

From Figure 4.19, it can be concluded that the 5-spacecraft cluster flying design for 

heterogeneous system does not violate the minimum and maximum distance 

constraints of 0.1 km and 50 km respectively over 20-day period. The minimum 

distance in RN occurs as 211.2 m. and maximum distance occurs as 47.3 km. in the 

cluster. In addition, the minimum distance in RTN occurs as 797.3 m. where the 

distance in RN is 792.7 m. In this way, it can be guaranteed that there is always a 

separation in RN when along-track distances are the lowest. Also, there is an 

exponential increase in along-track separation between the spacecraft due to 

differential drag effects caused by 𝛥𝛽𝑙
∗. In order to maintain the cluster flying, along-

track separation due to differential drag needs to be compensated. 

In addition to relative distance plots, the relative motion of spacecraft in Radial, 

Along-Track and Cross-Track (RTN) are shown in Figure 4.20, Figure 4.21, Figure 
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4.22 and Figure 4.23. In the plots, ‘*’ sign marks the initial condition, 𝑇0, and ‘o’ 

sign marks the final condition, 𝑇𝑓. 

 

Figure 4.20. Along-Track - Radial Distances of 5 Day-Result for 5 Spacecraft 

Heterogeneous Cluster with Station-Keeping Objective. 

The Along-Track – Radial plot for 5-spacecraft heterogeneous cluster shows that 

there is a radial separation between the spacecraft when along-track distance 

disappears. As the biggest uncertainty occurs in along-track direction, this provides 

an inherent safety for the cluster. Although the plot shows 20-day trajectories, there 

are regions where some relative orbits can intersect in along-track direction. In this 

case, it can be seen in Figure 4.21 and Figure 4.22 that there is always a distance in 

cross-track direction between these relative orbits when radial distance diminish or 

radial distance when cross-track distance diminish. In this way, a separation either 

in radial or cross rack direction is always ensured within the cluster. 
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Figure 4.21. Along-Track – Cross-Track Distances of 5 Day-Result for 5 Spacecraft 

Heterogeneous Cluster with Station-Keeping Objective. 

 

Figure 4.22. Cross-Track - Radial Distances of 5 Day-Result for 5 Spacecraft 

Heterogeneous Cluster with Station-Keeping Objective. 
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Figure 4.23. Radial – Along-Track – Cross-Track Distances of 5 Day-Result for 5 

Spacecraft Heterogeneous Cluster with Station-Keeping Objective. 

Finally, the boundaries are realized within a 6 x 14 x 20 km3 volume for 5-spacecraft 

20-day duration heterogeneous cluster. Finally, when solutions for 5-spacecraft 

cluster with various duration and homogeneity are compared, it is observed that the 

percentage of feasible solutions dramatically decrease from short duration to long 

duration and from homogeneous system to heterogeneous system. Also, the 

objective function value for station-keeping increases from short duration to long 

duration as well as from homogeneous system to heterogeneous system. 

For LEO missions, as it is the case studied in this chapter, the requirement for a long-

term cluster configuration would be to minimize the differential drag since this 

would lead to a fast along-track separation between the spacecraft. In the 

heterogeneous system case, the differential drag is inevitable in the existence of 

different drag parameters. However, the cluster configurations found with the 

developed methodology provide the right initial conditions that adjust the drift over 
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a specific time interval in the existence of relative drag. With this, it is also possible 

to determine the time validity of a given heterogeneous cluster configuration with 

different number of spacecraft, distance bounds and spacecraft parameters. 

With the methodology whose performance is discussed in this chapter can be used 

to define general boundaries of a homogeneous and heterogeneous clusters and their 

time validity (until control actions are necessary) with relatively moderate fidelity. 

This method requires low computational demand therefore becomes ideal for a 

general mission design, analysis and/or assessment of spacecraft clusters. It takes 

less than 5 minutes to find an optimal solution for a 2-day duration 10-spacecraft 

configuration. 
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CHAPTER 5  

5 CLUSTER FLYING MAXIMIZING SAFETY OBJECTIVE 

In this chapter, cluster flying design methodology explained in Chapter 3 is applied 

for passively safe long-term multi-spacecraft cluster flying design maximizing safety 

objective. In this approach, design variables are selected as relative osculating orbital 

elements for each spacecraft. These relative orbital elements which are derived from 

a reference state vector are propagated through high precision orbit propagator with 

uncertainty as described in Figure 3.2. In addition, the objective function is specified 

as defined by Eq. (63) and constraints are specified as defined by Eq. (59) and Eq. 

(61). In order to demonstrate the effectiveness of the methodology, a problem whose 

assumptions and parameters are summarized in Table 5.1 is set. 

Table 5.1 Cluster Flying Design Formulation with Safety Objective 

Parameter Specification 

Objective Function Minimize Eq. (63) 

Constraint Function(s) Eq. (59) 

Bounds on Design Variables Eq. (65) 

Propagator Numerical with uncertainty propagation 

Inputs and Assumptions Reference Orbit SSO, LTDN 10:30 at 

685 km altitude 

Spacecraft Number 5 

𝑑𝑚𝑖𝑛 in RN Plane 0.1 km 

𝑑𝑚𝑎𝑥 in RTN Plane 50 km 

𝛥𝑎 Difference 0 km 
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Physical Differences Defined by 

𝑚𝑙, 𝐴𝑑,𝑙, 𝐶𝑑,𝑙, 𝐴𝑟,𝑙, 𝐶𝑟,𝑙 

(−0.5 × 𝛽𝑟𝑒𝑓 < 𝛥𝛽𝑙 < 

0.5 × 𝛽𝑟𝑒𝑓) 

Radius of Conjunction 

Area, Rc 

20 m 

Initial Position 

Covariance (3σ) in 

RTN (m2) 

PRTN,R0 = diag[3.62, 

222, 22] 

Initial Velocity 

Covariance (3σ) in 

RTN (m/sec) 

PRTN,V0 = diag[0.022, 

0.0042, 0.0032] 

Covariance Update Every 12 Hours 

Duration, 𝑇𝑚𝑎𝑥 3 days 

Step Size 10 sec 

 

This scenario reflects the assumptions for a ground based operational analysis with 

a 12-hour communication outage. This represents the perspective of an analysis 

engineer to forecast and identify any collision risks over the next 12 hours. 

Therefore, the initial covariance is updated every 12 hours to represent a realistic 

scenario of receiving the most recent orbit determination solution with this period 

for a LEO mission. In this manner, initial covariance values are assumed such that a 

GNSS receiver with moderate accuracy, for instance a small satellite GNSS receiver, 

is utilized. 

For this scenario, the feasible design solution for 5 spacecraft is simulated for 3 days 

and the distances between any two spacecraft during each time instant for 10 

combinations is shown in the Figure 5.1. In the figure, each discrete time interval, 

for example 0 to 1, 1 to 2, etc. until 9 to 10 corresponds to 3-day simulation result 

for each combination of Spacecraft 1 and 2, Spacecraft 1 and 3, etc. until 10th 

combination of Spacecraft 4 and 5. 
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Figure 5.1. Cluster Flying 3 Day-Result for 5 Spacecraft Heterogeneous System with 

Safety Objective. 

From the Figure 5.1, it can be concluded that the 5 spacecraft design does not violate 

the minimum and maximum distance constraints of 0.1 km and 25 km respectively 

over 3 day period. The minimum distance in RN occurs as 353.5 m. and maximum 

distance occurs as 22 km. in the cluster. In addition, the minimum distance in RTN 

occurs as 418.4 m. where the distance in RN is 364.1 m. In this way, it can be 

guaranteed that there is always a separation in RN when along-track distances are 

the lowest. 

In addition to relative distance plots, the relative motion of spacecraft in Radial, 

Along-Track and Cross-Track (RTN) are shown in Figure 5.2, Figure 5.3, Figure 5.4 

and Figure 5.5. In the plots, ‘*’ sign marks the initial condition, 𝑇0, and ‘o’ sign 

marks the final condition, 𝑇𝑓. 
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Figure 5.2. Along-Track - Radial Distances of 3 Day-Result for 5 Spacecraft 

Heterogeneous Cluster with Safety Objective. 

The Along-Track – Radial plot for 5-spacecraft heterogeneous cluster shows that 

there is a radial separation between the spacecraft when along-track distance 

disappears. As the biggest uncertainty occurs in along-track direction, this provides 

an inherent safety for the cluster. Although the plot shows 3-day trajectories, there 

are regions where some relative orbits can intersect in along-track direction. In this 

case, it can be seen in Figure 5.3 and Figure 5.4 that there is always a distance in 

cross-track direction between these relative orbits when radial distance diminish or 

radial distance when cross-track distance diminish. In this way, a separation either 

in radial or cross rack direction is always ensured within the cluster. 
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Figure 5.3. Along-Track – Cross-Track Distances of 3 Day-Result for 5 Spacecraft 

Heterogeneous Cluster with Safety Objective. 

 

Figure 5.4. Cross-Track - Radial Distances of 3 Day-Result for 5 Spacecraft 

Heterogeneous Cluster with Safety Objective. 
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Figure 5.5. Radial – Along-Track – Cross-Track Distances of 3 Day-Result for 5 

Spacecraft Heterogeneous Cluster with Safety Objective. 

Here, the boundaries of the cluster are realized within a 6 x 20 x 20 km3 volume for 

5-spacecraft 3-day duration heterogeneous cluster with safety objective. When 

compared to the problem with station-keeping objective, the cluster with safety 

objective, is realized with more expansion in volume even for shorter duration. 

Therefore, it can be concluded that increasing safety requirements or objectives 

would result in more expansion in cluster size. Probabilities of collision between any 

2 spacecraft for 3 days duration are shown in the Figure 5.6. 
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Figure 5.6. Probabilities of Collision Between 2 Spacecraft for 10 Combinations 

during the Simulation Duration. (Red line indicates the probability of 1x10-4.) 

It can be observed from the Figure 5.6 that the maximum probability of collision 

(PoC) between any 2 spacecraft is realized around 2x10-3. Although the maximum 

probabilities reach the orders of 10-3, they mostly stay below 1x10-4. For the 

controlled cluster operations, these values can be acceptable depending on the 

operator’s evaluation. Here, the maximum PoC occurs for the 4th combination where 

conjunction takes place between the spacecraft 1 and 5. This conjunction with 

associated uncertainty ellipsoids is shown in Figure 5.7. 
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Figure 5.7. Conjunction Between Spacecraft 1 and 5 where PoC is around 2x10-3. 

In Figure 5.7, it is seen that the 3 sigma covariances for spacecraft 1 and 5 intersect 

and the PoC value become considerable. However, the intersection is along the radial 

or cross track direction where the uncertainties are not the biggest and spacecraft 

motions are along the same direction. Also, in reality, the navigation uncertainties 

may be realized much lower than the values, which are defined to account for the 

worst cases, used in this simulation. Indeed, when good initial covariance values 

such as PRTN,R0 = diag[ 0.82, 1.52, 1.22] in meters2 and PRTN,V0 = [0.00162, 0.00142, 

0.00092] in m2/sec2 are used, the maximum observed PoC occurs in the order of 1x10-

23. Even in the worst-case analysis, the probabilities are observed to be within the 

acceptable levels for long time intervals (i.e., days). In this manner, it can be deduced 

Spacecraft #1 

Spacecraft #5 
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that reconfiguration maneuvers would not be required frequently for collision 

avoidance.  

In the cluster flying design method with safety objective, the orbits are propagated 

with high precision and therefore it is possible to harness the natural dynamics 

further while designing cluster configurations. Also, navigation uncertainties are 

incorporated and safety measures are calculated to assess the boundaries of a cluster 

and its time validity (until control actions are necessary) with very high fidelity. In 

this manner, the method becomes ideal for a fine and precise analysis and/or 

assessment. However, it requires a quite high computational demand and it takes 

several hours to find an optimal solution for a 5-spacecraft 3-day cluster 

configuration. 
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CHAPTER 6  

6 CLUSTER FLYING MINIMIZING DILUTION OF PRECISION 

In Chapter 4 and Chapter 5, general cluster flying design methodologies are 

introduced with station-keeping and safety objectives. However, the developed 

methodology can be also applied for specific applications. One of the interesting 

utilizations of distributed space systems is the geolocation of ground-based 

(stationary) radio frequency (RF) emitters from space (Sarda, Roth, Zee, CaJacob, 

& Orr, 2018). In this problem, emitters are active targets with unknown positions 

and spaceborne receivers are used as passive sensors with known positions and 

velocities. In addition, the target is not cooperative which means that emitter does 

not transmit any information which may help the determination of its position. 

Therefore, the sensor is responsible for generating the measurement by processing 

the emitted signal. In this way, the multiple spacecraft in the distributed space system 

collect these signals simultaneously and generate measurements to determine the 

target’s position information. In this chapter, introduction of mathematical 

performance index of Dilution of Precision (DOP) for RF geolocation and cluster 

design for spaceborne RF geolocation are provided in detail. 

6.1 Geolocation of RF Emitters and Dilution of Precision 

For RF geolocation (RFGL), mainly two methodologies can be considered in 

general: Frequency Difference of Arrival (FDOA) and Time Difference of Arrival 

(TDOA). Among these, TDOA is more widely utilized where signal time of arrivals 

from an emitter with respect to different observers are measured and these 

measurements are differenced to eliminate the unknown emission time (Nadav & 

Gurfil, 2022). In this way, TDOA measurements are generated to obtain relative 
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ranges with respect to the observers and a minimum of three observers are required 

to determine the emitter’s position.  

Firstly, let’s denote 𝚾 as the position of the terrestrial emitter to be located and 𝑠𝑖 as 

the position of spacecraft in the cluster. Then, the slant range 𝜌𝑖 between the 

spacecraft, 𝑙, with position vector, 𝑠𝑙, and the emitter is defined in Eq. (66). 

𝜌𝑖 = √(𝚾 − 𝑠𝑙)(𝚾 − 𝑠𝑙)𝑇 (66) 

The TDOA measurement between spacecraft 𝑙 and 𝑚 can be derived as in Eq. (67). 

𝜏𝑙,𝑚 =
1

𝑐
(𝜌𝑙 − 𝜌𝑚) =

1

𝑐
(√(𝚾 − 𝑠𝑙)(𝚾 − 𝑠𝑙)𝑇 − √(𝚾 − 𝑠𝑚)(𝚾 − 𝑠𝑚)𝑇) (67) 

where, 𝑐 is the speed of light and 𝑙 ≠ 𝑚. Based on these relations, the geometry of 

the TDOA geolocation is illustrated in Figure 6.1. 

 

Figure 6.1. The Geometry of TDOA Geolocation 

Based on this geometry, first spacecraft, 𝑙 = 1, can be considered as reference and 

two TDOA measurements can be written as 𝜏1,2 and 𝜏1,3. Another constraint is that 

the RF emitter is located on the surface of the Earth and corresponding equation can 

be written as described in Eq. (68). 
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𝑅⨁
2 = 𝑥2 + 𝑦2 + 𝑧2 (68) 

With two equations derived from unique measurements and one constraint equation, 

three equations can be solved for the cartesian coordinates of emitter with three 

elements. However, the accuracy of the position estimation of emitter depends on 

the geometry between the spacecraft and the emitter which depend on the cluster 

design. Here, the performance index DOP for geometric distribution is derived such 

that minimizing it provides the most accurate position estimation. Defining the 

measurement function, ℎ(𝚾), with equations (67) and (68), expanding it in a Taylor 

series about some nominal solution 𝚾𝑛𝑜𝑚 is provided in Eq. (69). 

𝒁 = ℎ(𝚾) = ℎ(𝚾𝑛𝑜𝑚) + 𝜕𝚾
𝜕ℎ(𝚾)

𝜕𝚾
]
𝚾=𝚾𝑛𝑜𝑚

+ ℎ𝑖𝑔ℎ𝑒𝑟𝑜𝑟𝑑𝑒𝑟𝑡𝑒𝑟𝑚𝑠 (69) 

where 𝒁 is the measurement and 𝜕𝚾 = 𝚾 − 𝚾𝑛𝑜𝑚. The Eq. (69) can be modified as 

given in Eq. (70). 

𝜕𝒁 = ℎ(𝚾) − ℎ(𝚾𝑛𝑜𝑚) = 𝜕𝚾
𝜕ℎ(𝚾)

𝜕𝚾
]
𝚾=𝚾𝑛𝑜𝑚

 

𝜕𝒁 = 𝐻𝜕𝚾 

(70) 

Defining ℎ1(𝚾) and  ℎ2(𝚾) with 𝑙 = 1 and 𝑚 = 2,3 in Eq. (67) and ℎ3(𝚾) as Eq. 

(68), the matrix 𝐻 can be written in the form of Eq. (71). 

𝐻 =

[
 
 
 
 
 
 
𝜕ℎ1

𝜕𝑥

𝜕ℎ1

𝜕𝑦

𝜕ℎ1

𝜕𝑧
𝜕ℎ2

𝜕𝑥

𝜕ℎ2

𝜕𝑦

𝜕ℎ2

𝜕𝑧
𝜕ℎ3

𝜕𝑥

𝜕ℎ3

𝜕𝑦

𝜕ℎ3

𝜕𝑧 ]
 
 
 
 
 
 

 

=

[
 
 
 
 
𝑥1 − 𝑥

𝜌1
−

𝑥2 − 𝑥

𝜌2

𝑦1 − 𝑦

𝜌1
−

𝑦2 − 𝑦

𝜌2

𝑧1 − 𝑧

𝜌1
−

𝑧2 − 𝑧

𝜌2
𝑥1 − 𝑥

𝜌1
−

𝑥3 − 𝑥

𝜌3

𝑦1 − 𝑦

𝜌1
−

𝑦3 − 𝑦

𝜌3

𝑧1 − 𝑧

𝜌1
−

𝑧3 − 𝑧

𝜌3
𝑥 𝑦 𝑧 ]

 
 
 
 

 

(71) 

 If the Eq. (70) is solved for 𝜕𝑿, the Eq. (72) is obtained. 
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𝜕𝑿 =  (𝐻𝑇𝐻)−1𝐻𝑇𝜕𝒁 (72) 

If the 𝜕𝐗 and 𝜕𝒁 are assumed to be random with zero mean, the expected error 

covariance would become 

𝐸⟨(𝜕𝚾)(𝜕𝚾)𝑇⟩ = 𝐸⟨(𝐻𝑇𝐻)−1𝐻𝑇𝜕𝒁((𝐻𝑇𝐻)−1𝐻𝑇𝜕𝒁)𝑇⟩ 

= (𝐻𝑇𝐻)−1𝐻𝑇𝐸⟨𝜕𝒁𝜕𝒁𝑇⟩𝐻 (𝐻𝑇𝐻)−1 
(73) 

where 𝐸⟨𝜕𝒁𝜕𝒁𝑇⟩ = 𝜎2𝐼 and 𝜎 is the standard deviation of the measurement error. 

By re-writing Eq. (73) with this relation, the Eq. (74) is obtained. 

𝐸⟨(𝜕𝚾)(𝜕𝚾)𝑇⟩ = 𝜎2(𝐻𝑇𝐻)−1 (74) 

In this manner, the minimization of the error depends on the right-hand side of the 

Eq. (74) which can be written in parametric form in Eq. (75). 

(𝐻𝑇𝐻)−1 = [

𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

] = [

𝐸⟨∆𝑥2⟩ 𝐸⟨∆𝑥∆𝑦⟩ 𝐸⟨∆𝑥∆𝑧⟩

𝐸⟨∆𝑦∆𝑥⟩ 𝐸⟨∆𝑦2⟩ 𝐸⟨∆𝑦∆𝑧⟩

𝐸⟨∆𝑧∆𝑥⟩ 𝐸⟨∆𝑧∆𝑦⟩ 𝐸⟨∆𝑧2⟩

] (75) 

With this, the DOP as a geometric performance parameter to be minimized is 

provided in Eq. (76). 

𝐷𝑂𝑃 = √𝐴11 + 𝐴22 + 𝐴33 (76) 

Finally, the performance index with non-dimensional form of DOP can be derived 

as given in Eq. (77). 

𝐽𝑅𝐹𝐺𝐿 =
𝐷𝑂𝑃

𝜎
 (77) 

where 𝜎 is the standard deviation of the receiver clock error for TDOA measurement. 

While designing a cluster for spaceborne RFGL applications, Eq. (77) can be utilized 

as a parameter to be minimized. Minimization of 𝐽𝑅𝐹𝐺𝐿 would provide the best 

accuracy for the position estimation of a specific terrestrial emitter. 
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6.2 Cluster Design for Spaceborne RF Geolocation 

As discussed previously, designing a spacecraft cluster for spaceborne RFGL 

requires the minimization of geometric factor DOP. In order to achieve this, it is 

necessary to introduce large distances between the spacecraft when compared to 

close proximity examples. This is mainly due to the fact that if there is a small 

distance as in the case of close proximity, it results like all measurements are 

performed by the same receiver and therefore uniqueness of these measurements 

diminishes. Therefore, the bounds on design variables for spaceborne RFGL needs 

to be slightly different from close proximity clusters. Here, the relative semimajor 

axis and eccentricity differences can be set as 𝛥𝑎𝑙 = 0 and 𝛥𝑒𝑙 = 0 as it is more 

convenient to introduce large distance offsets in terms of mean anomaly or argument 

of latitude in the form of 𝛥𝑀𝑙 or 𝛥𝑢𝑙 in general. In this manner, large along-track 

offsets can be obtained and out of plane differences can be introduced by relative 

inclination and right ascension of the ascending node, 𝛥𝑖𝑙 and 𝛥𝛺𝑙. With these, there 

would be only three design variables 𝛥𝑖𝑙, 𝛥𝛺𝑙 and 𝛥𝑀𝑙 or 𝛥𝑢𝑙. For a cluster to be 

operated with 100 km maximum distances, the constraints on these design variables 

can be specified as described in Eq. (78). 

−0.05° ≤ 𝛥𝑖𝑙 ≤ 0.05°

−0.5° ≤ 𝛥𝛺𝑙 ≤ 0.5°

−0.5° ≤ 𝛥𝑢𝑙 ≤ 0.5°

 (78) 

In addition, it is necessary to incorporate the measurement conditions realistically by 

considering field of view (FoV) of the receiver and spacecraft-emitter geometry. In 

this manner, the nadir offset angle, 𝜗, between the spacecraft and emitter as well as 

the angle between spacecraft and emitter positions, 𝜙, can be checked whether it is 

possible to generate a measurement or not during the mission duration. For instance, 

it can be deduced that a measurement is generated if the conditions 𝜗𝑗 < 𝜗𝑚𝑎𝑥 and 

𝜙𝑗 < 𝜙𝑚𝑎𝑥 are satisfied for time instants 𝑗 = 1,… , 𝑇. Here, the first condition would 

ensure the FoV compatibility and second condition would ensure that both spacecraft 

and emitter are on the same portion of the Earth’s ellipsoid.  
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Finally, the performance index shall be checked for over the mission duration as 

there could be several unique measurement opportunities. Therefore, the mean of the 

performance index values over mission duration over a target emitter can be defined 

as objective function to be minimized as described in Eq. (79) 

𝐽 =
1

𝑀
∑ 𝐽𝑘,𝑅𝐹𝐺𝐿

𝑀

𝑘=1

 (79) 

Where 𝑘 is measurement index and 𝑀 is the total number of measurements generated 

over the mission duration. With this, a sample problem for RFGL cluster design with 

its assumptions is summarized in Table 6.1. 

Table 6.1 RFGL Cluster Design Formulation with 3 Spacecraft and DOP Objective 

Parameter Specification 

Objective Function Minimize Eq. (79) 

Constraint Function(s) Eq. (60) 

Bounds on Design Variables Eq. (78) 

Propagator Analytical (SGP4) 

Inputs and Assumptions Reference Orbit SSO, LTDN 10:30 at 

575 km altitude 

Emitter Coordinates (39.925°, 32.866°) 

Spacecraft Number 3 

𝑑𝑚𝑖𝑛and 𝑑𝑚𝑎𝑥 in 

RTN Plane 

30 km and 80 km 

Fixed Differences [𝛥𝑎𝑙𝛥𝑒𝑙] = [00] 

Physical Differences Defined by 𝛥𝛽𝑙
∗ = 0 

Measurement 

Conditions 
𝜗𝑗 < 50°, 𝜙𝑗 < 21.5° 

Duration, 𝑇𝑚𝑎𝑥 7, 14, 21 and 28 days 

Step Size 60 sec 

Sample Number 5000 
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In this problem, a reference orbit of Sun-Synchronous LTDN 10:30 at 575 km is 

specified. While the spacecraft number is fixed at 3 for a minimum number RFGL 

cluster, simulation duration is varied as 7, 14, 21 and 28 days. The physical 

differences through drag parameters, 𝛥𝛽𝑙
∗, are not introduced as the spacecraft are 

assumed to be identical. While minimum and maximum distance constraints are set 

as 30 km and 80 km respectively, the semimajor axis and eccentricity differences, 

𝛥𝑎 and 𝛥𝑒, are set to 0. Finally, sample number is defined as 5000 to have a good 

representation of design space and generate several solutions for comparison. The 

sample results of an optimized solution for 3-spacecraft RFGL cluster and 28 day-

duration are shown in Figure 6.2 and Figure 6.3. 

 

Figure 6.2. Feasible Solutions (red points) from 5000 Samples for 3-Spacecraft 

RFGL Cluster and 28 Day-Duration. 

From Figure 6.2, it can be seen that there are 8 feasible solutions which is 0.16% of 

5000 samples. Also, the objective function values, i.e., mean DOP, are quite various 
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ranging from less than 1 to higher than 100. Based on the objective function values 

of feasible solutions, the design point is selected such that the objective function has 

the minimum value of 0.627. The resulting relative distances for 𝐶2
3 = 3 

combinations are shown in Figure 6.3. 

 

Figure 6.3. Cluster Flying 28 Day-Result for 3 Spacecraft with DOP objective. 

From Figure 6.3, it can be concluded that the 3-spacecraft RFGL cluster flying 

design does not violate the minimum and maximum distance constraints of 30 km 

and 80 km respectively over 28-day period. The minimum distance occurs as 33 km. 

and maximum distance occurs as 74.2 km. in the cluster. The resulting geometry of 

RFGL spacecraft cluster over the emitter is shown in Figure 6.4. Here, the red points 

mark the spacecraft positions and white point marks the emitter position. 
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Figure 6.4. RFGL Cluster Geometry of 3 Spacecraft with Respect to Emitter. 

The cluster geometry shown in Figure 6.4 indicates that the spacecraft are distributed 

such that large distance offsets between the spacecraft are achieved to minimize DOP 

while passing over the emitter. In addition, the results for several simulation 

durations from 7 to 28 days are provided in Table 6.2. 

Table 6.2 RFGL Cluster Design Results with 3 Spacecraft for Various Durations 

 7 days 14 days 21 days 28 days 

Solution Percentage 0.92% 0.42% 0.28% 0.16% 

Min. Objective Value 0.547 0.622 0.712 0.627 

 

From Table 6.2, it can be deduced that the simulation duration does not have a 

significant impact on the objective function value. However, the solution number 

decreases as the simulation duration increases. 
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In order to see the effect of more spacecraft in the RFGL cluster, the problem defined 

in Table 6.1 is modified by specifying spacecraft number as 4 and minimum and 

maximum distance constraints are set as 20 km and 100 km. The resulting problem 

is defined in Table 6.3.  

Table 6.3 RFGL Cluster Design Formulation with 4 spacecraft and DOP Objective 

Parameter Specification 

Objective Function Minimize Eq. (79) 

Constraint Function(s) Eq. (60) 

Bounds on Design Variables Eq. (78) 

Propagator Analytical (SGP4) 

Inputs and Assumptions Reference Orbit SSO, LTDN 10:30 at 

575 km altitude 

Emitter Coordinates (39.925°, 32.866°) 

Spacecraft Number 4 

𝑑𝑚𝑖𝑛and 𝑑𝑚𝑎𝑥 in 

RTN Plane 

20 km and 100 km 

Fixed Differences [𝛥𝑎𝑙𝛥𝑒𝑙] = [00] 

Physical Differences Defined by 𝛥𝛽𝑙
∗ = 0 

Measurement 

Conditions 
𝜗𝑗 < 50°, 𝜙𝑗 < 21.5° 

Duration, 𝑇𝑚𝑎𝑥 7, 14, 21 and 28 days 

Step Size 60 sec 

Sample Number 5000 

 

The sample results of an optimized solution for 4-spacecraft RFGL cluster and 28 

day-duration are shown in Figure 6.5 and Figure 6.6. 
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Figure 6.5. Feasible Solutions (red points) from 5000 Samples for 4-Spacecraft 

RFGL Cluster and 28 Day-Duration. 

From Figure 6.5, it can be seen that there are 21 feasible solutions which is 0.42% 

of 5000 samples. Also, the objective function values, i.e., mean DOP, are quite 

various ranging from less than 1 to higher than 30. Based on the objective function 

values of feasible solutions, the design point is selected such that the objective 

function has the minimum value of 0.502. The resulting relative distances for 𝐶2
4 =

6 combinations are shown in Figure 6.6. 
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Figure 6.6. Cluster Flying 28 Day-Result for 4 Spacecraft with DOP objective. 

From Figure 6.6, it can be concluded that the 4-spacecraft RFGL cluster flying 

design does not violate the minimum and maximum distance constraints of 20 km 

and 100 km respectively over 28-day period. The minimum distance occurs as 24.6 

km. and maximum distance occurs as 93.7 km. in the cluster. The resulting geometry 

of RFGL spacecraft cluster over the emitter is shown in Figure 6.7. Here, the red 

points mark the spacecraft positions and white point marks the emitter position. 

The cluster geometry shown in Figure 6.7 indicates that the spacecraft are distributed 

such that large distance offsets between the spacecraft are achieved to minimize DOP 

while passing over the emitter. In addition, the removal of any spacecraft from the 

cluster would still provide large distance offsets between the spacecraft and a 

reasonable DOP can be still achieved. 
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Figure 6.7. RFGL Cluster Geometry of 4 Spacecraft with Respect to Emitter. 

The results for several simulation durations from 7 to 28 days are also provided in 

Table 6.4. 

Table 6.4 RFGL Cluster Design Results with 4 Spacecraft for Various Durations 

 7 days 14 days 21 days 28 days 

Solution Percentage 1.1% 0.84% 0.6% 0.42% 

Min. Objective Value 0.3795 0. 5631 0.5872 0.5024 

 

From Table 6.4, it can be deduced that the simulation duration does not have a 

significant impact on the objective function value. However, the solution number 

decreases as the simulation duration increases. When compared to 3-spacecraft 

cluster, the 4-spacecraft cluster with more relaxed distance constraints becomes more 

robust with respect to spacecraft losses and DOP values are also improved. 
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CHAPTER 7  

7 CLUSTER RECONFIGURATION WITH CONTROL CONSTRAINTS 

In previous chapters, cluster flying design providing passively safe long-term 

operations which would not require any reconfiguration over a specific time interval 

is developed. However, as the time validity of the configuration expires through 

violation of constraints or mission requirements, reconfiguration of the cluster is 

necessary. In this chapter, cluster flying design methodology which is explained in 

Chapter 3 is extended to reconfiguration problem. Here, sequential cluster 

configurations are found by minimizing the total maneuvering effort which transfers 

initial cluster to the next one while bounding deviations from a reference mean orbit 

for long time intervals. The minimization of maneuvering effort is realized through 

generating delta-V (∆V) maps and associating relative orbits on the current 

configuration to the next one using an auction algorithm. In this way, the auction 

algorithm provides the lowest total delta-V for whole cluster. Here, reference ∆V 

values for reconfiguration are calculated based on an optimal impulsive transfer 

(OIT) methodology to obtain theoretical minimum.  Although new configurations 

are found through reconfiguration in this way, impulsive transfer results in infeasible 

∆V requirements for real life systems. Therefore, the reconfiguration ∆V map is 

recalculated by utilizing constrained optimal control methodologies which 

incorporates ∆V limitations so that the realistic control inputs are found.  

In the following chapters, the sequential cluster design and reconfiguration strategy 

as well as different methodologies for relative orbit transfer such as impulsive, model 

predictive control and nonlinear optimal control are introduced with their 

performance evaluation. Finally, a case study for the RFGL mission is provided. 
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7.1 Sequential Cluster Design and Reconfiguration 

The reconfiguration of a spacecraft cluster is considered as designing sequential 

cluster configurations based on minimizing total maneuvering effort. Here, as 

described previously, sequential configurations of spacecraft clusters are found 

initially. Then, reconfiguration maneuvers are calculated for each spacecraft to 

change its orbit and move into another orbit in the next configuration. This process 

is illustrated in Figure 7.1. 

 

Figure 7.1. Overview of Sequential Cluster Design and Reconfiguration. 

Firstly, an initial reference orbit is calculated, propagated for the cluster design time 

interval (i.e. days) and using the resulting ephemeris a mean orbit, or TLE, is fitted. 

Then a cluster is designed for station-keeping or safety objectives as described in 

previous chapters using the mean orbit or ephemeris. When the 1st configuration is 

expired, a 2nd configuration can be found by minimizing the total maneuver effort 

while satisfying the same distance constraints. The timeline representation and 

implementation of this process is shown in Figure 7.2. 
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Figure 7.2. Implementation of Sequential Cluster Design and Reconfiguration. 

As it can be seen from Figure 7.2, the relative orbital elements are found around the 

mean orbital elements which are fitted for the numerically propagated reference 

orbit. Then the differences between the relative orbital elements from initial cluster 

to next can be calculated by using Eq. (80). 

∆𝑜𝑒 = (𝛼𝑟,𝑡1
𝑇𝐿𝐸 +  ∆𝛼𝑙,𝑡0

𝑇𝐿𝐸) − (𝛼𝑟,𝑡1
𝑇𝐿𝐸 +  ∆𝛼𝑙,𝑡1

𝑇𝐿𝐸) (80) 

This difference in relative orbits determines the reconfiguration maneuver 

requirements. The reconfiguration is formulated such that each spacecraft assigned 

to a specific relative orbit within the initial cluster is transferred to each relative orbit 

in the next cluster. While calculating the orbital transfers, an algorithm by (Eagle, 

2021) which is based on two-impulse optimal transfer methodology developed by 

(Lee, 1964) and (McCue & Bender, 1965) is utilized. Using the resulting information 

from orbital transfers, a ∆V map is generated to represent maneuvering requirements. 

A sample ∆V map for a 5-spacecraft cluster is given in Table 7.1. Here, 𝑅𝑂𝑖,𝑡𝑗 stands 

for relative orbit 𝑖 of the configuration at time instant 𝑗. For instance, orbital transfer 

from first relative orbit of first configuration at 𝑡0 to the second relative orbit of 

second configuration at 𝑡1 requires a ∆V of 2.43 meters per second. Then this table 

is used to assign spacecraft from initial cluster configuration to the next one by 

minimizing the total maneuver effort for whole cluster utilizing an auction algorithm 

developed by (Bertsekas, 1992). 
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Table 7.1 Sample ∆V Map for a Reconfiguration of 5 Spacecraft Cluster 

ΔV 

[m/sec] 

RO1,t1 RO2,t1 RO3,t1 RO4,t1 RO5,t1 

RO1,t0 7.95 2.43 13.34 15.6 15 

RO2,t0 3.1 6.9 6.76 8.3 10.2 

RO3,t0 3.43 8.03 4 6.46 7.6 

RO4,t0 5.13 11.3 4.98 4.34 6.99 

RO5,t0 6.02 1.89 11.05 13.33 12.99 

 

From the sample ∆V map given in Table 7.1, minimum total maneuvering effort is 

obtained if the reconfiguration is performed as follows: 𝑅𝑂1,𝑡0 → 𝑅𝑂2,𝑡1, 𝑅𝑂2,𝑡0 → 

𝑅𝑂1,𝑡1, 𝑅𝑂3,𝑡0 → 𝑅𝑂3,𝑡1, 𝑅𝑂4,𝑡0 → 𝑅𝑂3,𝑡1, 𝑅𝑂5,𝑡0 → 𝑅𝑂5,𝑡1. The total ∆V 

requirement for whole cluster would become 26.9 m/sec. The final problem for 

cluster reconfiguration can be formulized with an objective to minimize the total 

transfer as described in (81). 

𝐽 = ∑∑|[∆𝑉𝑙,𝑗
𝑅 ∆𝑉𝑙,𝑗

𝑇 ∆𝑉𝑙,𝑗
𝑁]|

𝑇

𝑗=1

5

𝑙=1

 (81) 

Using this cost function, it is possible to calculate the norm of the total maneuvering 

effort that is separately calculated for RTN directions. The resulting reconfiguration 

problem and parameters for a reference simulation are summarized in Table 7.2. 

Table 7.2 Reconfiguration Problem with the Objective of Minimizing Total 

Maneuvering for a Cluster of 5 Spacecraft 

Parameter Specification 

Objective Function Minimize Eq. (81) 

Constraint Function(s) Eq. (59) 

Bounds on Design Variables Eq. (65) 
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Propagator Analytical (SGP4) 

Inputs and Assumptions Reference Orbit SSO, LTDN 10:30 at 

685 km altitude 

Spacecraft Number 5 

𝑑𝑚𝑖𝑛and 𝑑𝑚𝑎𝑥 in 

RTN Plane 

0.1 km and 20 km 

Maneuver Calculation 

Methodology 

OIT 

Physical Differences Defined by 𝛥𝛽𝑙
∗ = 0 

Duration, 𝑇𝑚𝑎𝑥 3 days 

Step Size 10 sec 

Sample Number 1000 

 

The design space exploration results for this problem are given in the Figure 7.3. 

 

Figure 7.3. Design Space Exploration Results for 5 Spacecraft Cluster 

Reconfiguration. 
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From the Figure 7.3, it can be seen that there are 17 solutions and the solution with 

minimum maneuvering effort for the cluster results in 23 m/sec of total ∆V. In 

addition, the ∆V map for this solution is given in Table 7.3. Here, it should be noted 

that there are no solutions for 2 transfers. 

Table 7.3 ∆V Map for a Reconfiguration of 5 Spacecraft Cluster with OIT 

ΔV 

[m/sec] 

RO1,t1 RO2,t1 RO3,t1 RO4,t1 RO5,t1 

RO1,t0 3.42 6.95 9.83 10.85 15.24 

RO2,t0 9.67 2.75 6.61 7.33 8.96 

RO3,t0 9.17 - 2.04 4.69 6.1 

RO4,t0 13.72 6.95 7.4 6.57 5.96 

RO5,t0 - 4.96 7.63 8.88 13 

 

From the ∆V map given in Table 7.3, minimum total maneuvering effort is obtained 

if the reconfiguration is performed as follows: 𝑅𝑂1,𝑡0 → 𝑅𝑂1,𝑡1, 𝑅𝑂2,𝑡0 → 𝑅𝑂2,𝑡1, 

𝑅𝑂3,𝑡0 → 𝑅𝑂3,𝑡1, 𝑅𝑂4,𝑡0 → 𝑅𝑂5,𝑡1, 𝑅𝑂5,𝑡0 → 𝑅𝑂4,𝑡1. The resulting configuration is 

simulated for 3 days and the distances between any two spacecraft during each time 

instant for 𝐶2
5 = 10 combinations are shown in the Figure 7.4. In the figure, each 

discrete time interval, for example 0 to 1, 1 to 2, etc. until 9 to 10, corresponds to 3-

day simulation result for each combination of Spacecraft 1 and 2, Spacecraft 1 and 

3, etc. until 10th combination of Spacecraft 4 and 5. 
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Figure 7.4. Cluster Flying 3 Day-Result for 5 Spacecraft with Minimum Impulsive 

Maneuvering Objective. 

From Figure 7.4, it may be concluded that the 5-spacecraft reconfiguration does not 

violate the minimum and maximum distance constraints of 0.1 km and 20 km 

respectively over 3-day period. Here, the solution to the problem given in Table 7.2 

provides the minimum theoretical maneuver requirement as the maneuvers are 

performed impulsive. In addition, impulsive transfer is computationally effective to 

identify potentially close orbits to calculate the reconfiguration. However, the 

required impulsive maneuvers are quite large or not possible to execute 

instantaneously (or quasi-instantaneously with a short duration) utilizing a real-life 

propulsion system. Therefore, it is necessary to introduce constraints on control 

inputs while transferring the cluster from current configuration to the next one. The 

solutions with input constraints are explained in Chapter 7.2 utilizing model 

predictive control (MPC) with linear time invariant (LTI) dynamics and in Chapter 

7.3 utilizing nonlinear optimal control with linear time variant (LTV) dynamics. 
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7.2 Reconfiguration by Model Predictive Control 

Another methodology to transfer a spacecraft to another orbit is the utilization of 

Model Predictive Control. Here, MPC is formulated to control relative motion where 

the objective is minimizing the overall control effort and state error with respect to 

the target orbit at the terminal time instant. To formulize this problem, the relative 

motion formulized in Eq. (42) is expressed as LTI system with Eq. (82) and Eq. (83). 

𝐴 =

[
 
 
 
 
 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3𝑛2 0 0 0 2𝑛 0
0 0 0 −2𝑛 0 0
0 0 −𝑛2 0 0 0]

 
 
 
 
 

, 𝐵 =

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1]

 
 
 
 
 

 

𝑥 = [𝑥 𝑦 𝑧 �̇� �̇� �̇�]𝑇     𝑢 = [𝑢𝑥 𝑢𝑦 𝑢𝑧]𝑇 

(82) 

𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒𝑆𝑦𝑠𝑡𝑒𝑚𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠: kkk BuAxx +=+1  (83) 

Where 𝑛 is the mean motion of the reference orbit, 𝑘 = 1,… ,𝑁 are discrete time 

instants, x, y, z represents the relative states and 𝑢𝑥, 𝑢𝑦, 𝑢𝑧 are control inputs in RTN 

directions. Then, MPC is formulated for N predictions as follows: 

Predictions:  𝑋𝑘 = [

𝑥1|𝑘

⋮
𝑥𝑁|𝑘

], 𝑈𝑘 = [

𝑢0|𝑘

⋮
𝑢𝑁−1|𝑘

] (84) 

Quadratic Cost:  𝐽𝑘 = 𝐽(𝑥𝑘, 𝑢𝑘) 

= ∑ (‖𝑥𝑖|𝑘‖
𝑄

2
+ ‖𝑢𝑖|𝑘‖𝑅

2
+ ‖𝑥𝑁|𝑘‖𝑃

2
)

𝑁−1

0

 

where ‖𝑥‖𝑄
2 =𝑥𝑇𝑄𝑥, ‖𝑢‖𝑅

2 =𝑢𝑇𝑅𝑢 and 𝑄, 𝑅 and 𝑃 are the weighting 

matrices for state, controls and terminal state respectively. 

(85) 



 

 

137 

𝑋𝑘 = ℳ𝑥𝑘 + 𝒞𝑈𝑘 

where   

𝒞 = [

𝐵 0 … 0
𝐴𝐵 𝐵 … 0
⋮ ⋮ ⋱ ⋮

𝐴𝑁−1𝐵 𝐴𝑁−2𝐵 … 𝐵

] ,ℳ = [

𝐴
𝐴2

⋮
𝐴𝑁

] 

(86) 

Predicted cost to be minimized becomes: 

𝐽𝑘 = 𝑈𝑘
𝑇𝐻𝑈𝑘 + 2𝑥𝑘

𝑇𝐹𝑇𝑈𝑘 

where   

𝐻 = 𝒞𝑇𝒬𝒞 + ℛ,    𝐹 = 𝒞𝑇𝒬ℳ,  

𝒬 = 𝑑𝑖𝑎𝑔{𝑄,… , 𝑄, 𝑃} and ℛ = 𝑑𝑖𝑎𝑔{𝑅, … , 𝑅, 𝑅} 

(87) 

Constraints:                         𝐴𝑐𝑈𝑘 ≤ 𝑏𝑐 + 𝐵𝑐𝑥𝑘 (88) 

 

Having this formulation, the settings of the reconfiguration problem with MPC are 

summarized in Table 7.4. 

Table 7.4 Orbital Transfer Formulation with LTI System MPC 

Parameter Specification 

Target State xtarget = [0  0  0  0  0  0]T 

Stop Condition xposition,error < 10 m. 

Time Step 60 sec. 

Prediction Horizon 300 (~3 orbits) 

Bounds on ∆V Input umin = -0.1 m/sec, umax = 0.1 m/sec 
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Using these settings, the solution found in Figure 7.3 is recalculated and the ∆V map 

is regenerated which is given in Table 7.5. 

Table 7.5 ∆V Map for the Reconfiguration of 5 Spacecraft Cluster with MPC 

ΔV 

[m/sec] 

RO1,t1 RO2,t1 RO3,t1 RO4,t1 RO5,t1 

RO1,t0 7.36 13.22 15.06 13.31 24.1 

RO2,t0 14.86 8.97 9.82 9.03 14.7 

RO3,t0 12.2 5.2 3.16 9.02 7.7 

RO4,t0 19.02 10.4 7.6 9.61 7.2 

RO5,t0 6.86 10.0 11.52 12.2 20.43 

 

In addition, a sample reconfiguration result is given for 𝑅𝑂1,𝑡0 → 𝑅𝑂1,𝑡1 in Figure 

7.5 and Figure 7.6. 

 

Figure 7.5. Relative Trajectory of MPC Reconfiguration 𝑅𝑂1,𝑡0 → 𝑅𝑂1,𝑡1. 
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Figure 7.6. Control History of MPC Reconfiguration 𝑅𝑂1,𝑡0 → 𝑅𝑂1,𝑡1. 

From the ∆V map given in Table 7.3, minimum total maneuvering effort is obtained 

if the reconfiguration is performed as follows: 𝑅𝑂1,𝑡0 → 𝑅𝑂1,𝑡1, 𝑅𝑂2,𝑡0 → 𝑅𝑂4,𝑡1, 

𝑅𝑂3,𝑡0 → 𝑅𝑂3,𝑡1, 𝑅𝑂4,𝑡0 → 𝑅𝑂5,𝑡1, 𝑅𝑂5,𝑡0 → 𝑅𝑂2,𝑡1.  Here, the solution with 

minimum maneuvering effort for the cluster results in 36.8 m/sec of total ∆V. From 

the Figure 7.5 and Figure 7.6 it can be seen that the solution is found when the 

stopping condition for relative distance error is satisfied and controls are almost 

converged except cross track to reduce further the small relative position error. Also, 

the maximum control input is bounded by 0.1 m/sec which would result in a thrust 

level less than 0.167 N for a 100 kg satellite with step size of 60 seconds. 

When OIT and MPC methodologies are compared, it can be observed that the MPC 

requires more maneuvering effort (about 1.6 times of the impulsive transfer 

requirement) as expected. However, with MPC, it is possible to put constraints on 

control inputs based on thruster limitations and find solutions where impulsive 
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transfer is not possible. While it takes half an orbit for impulsive transfer to be 

realized, it takes around 2 to 3 orbits for MPC solution to complete reconfiguration. 

The total cost, i.e. the maneuvering effort, can be reduced by increasing the penalty 

on control inputs via the term 𝑅 in Eq. (85), however, this will result in more transfer 

time and need to be checked for safety conditions (Eq. (59)) continuously. Finally, 

as there is an extensive dynamics calculation for prediction horizon, MPC results in 

more computational demand when compared to OIT. 

7.3 Reconfiguration by Nonlinear Optimal Control 

In order to reduce computational demand and find solutions for optimal transfer, the 

problem defined in Chapter 7.2 is reformulated by utilizing a nonlinear optimal 

control (NOC) technique. Here, NOC is also formulated to control relative motion 

where the objective is minimizing the overall control effort and state error with 

respect to the target orbit at the terminal time instant. Here, the objective, or cost, 

function can be written for the overall control effort in Eq. (89). 

𝐽 = ∑ 𝑢𝑘
𝑇𝑢𝑘

𝑁

𝑘=1

 (89) 

Then the constraints for the relative dynamics, terminal states and control inputs are 

defined in Eq. (90). 

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘), 

𝑥𝑁+1 = [0 0 0 0 0 0]𝑇 , 

𝑢𝑚𝑖𝑛 ≤  𝑢𝑘  ≤  𝑢𝑚𝑎𝑥 . 

(90) 

Where 𝑓(𝑥𝑘, 𝑢𝑘) is the relative dynamics formulated in Eq. (82) and (83) which is 

integrated via RK4 and 𝑁 + 1 is the terminal time instant where the relative position 

and velocity are expect to diminish with respect to target orbit. If the relative position 

and velocity diminish then spacecraft is totally transferred to the target orbit. The 

final formulation for the LTI system NOC is summarized in Table 7.6. 
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Table 7.6 Orbital Transfer Formulation with LTI System NOC 

Parameter Specification 

Objective Function Minimize Eq. (89) 

Constraint Function(s) Eq. (90) 

System Dynamics Eq. (82) and (83) 

Time Step 60 sec. 

Simulation Duration N =300 steps (~3 orbits) 

Bounds on ∆V Input umin = -0.1 m/sec, umax = 0.1 m/sec 

 

For the optimization, the Interior Point Optimizer (IPOPT) developed by (Wächter 

& Biegler, 2006) is used with the CasADi framework developed by (Andersson, 

Gillis, Horn, Rawlings, & Diehl, 2019). Using these settings, the solution found in 

Figure 7.3 is recalculated and the resulting ∆V map is given in Table 7.7. 

Table 7.7 ∆V Map for the Reconfiguration of 5 Spacecraft Cluster with LTI NOC 

ΔV 

[m/sec] 

RO1,t1 RO2,t1 RO3,t1 RO4,t1 RO5,t1 

RO1,t0 4.27 9.8 12.75 13.89 19.75 

RO2,t0 11.91 4.85 7.99 9.23 11.97 

RO3,t0 11.74 5.64 2.66 6.28 7.82 

RO4,t0 17.01 8.87 7.34 8.09 6.74 

RO5,t0 4.46 7.21 9.89 11.41 16.85 

 

In addition, sample reconfiguration results are given for 𝑅𝑂1,𝑡0 → 𝑅𝑂1,𝑡1 and 𝑅𝑂3,𝑡0 

→ 𝑅𝑂3,𝑡1 in Figure 7.7. 
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Figure 7.7. Relative Trajectory of LTI NOC Reconfiguration 𝑅𝑂1,𝑡0 → 𝑅𝑂1,𝑡1 (Left) 

and 𝑅𝑂3,𝑡0 → 𝑅𝑂3,𝑡1 (Right). 

From the ∆V map given in Table 7.7, minimum total maneuvering effort is obtained 

if the reconfiguration is performed as follows: 𝑅𝑂1,𝑡0 → 𝑅𝑂1,𝑡1, 𝑅𝑂2,𝑡0 → 𝑅𝑂2,𝑡1, 

𝑅𝑂3,𝑡0 → 𝑅𝑂3,𝑡1, 𝑅𝑂4,𝑡0 → 𝑅𝑂5,𝑡1, 𝑅𝑂5,𝑡0 → 𝑅𝑂4,𝑡1. Here, the solution with 

minimum maneuvering effort for the cluster results in 29.9 m/sec of total ∆V. From 

the Figure 7.7, it can be seen that the solution is found with relative distance 

diminished at the terminal time instant. Also, the maximum control input is bounded 

by 0.1 m/sec and the maximum thrust level required is less than 0.04 N for a 100 kg 

satellite with step size of 60 seconds. 

When OIT and LTI NOC methodologies are compared, it can be observed that the 

LTI NOC requires more maneuvering effort (about 1.3 times of the impulsive 

transfer requirement) as expected. However, with LTI NOC, it is possible to put 

constraints on control inputs based on thruster limitations and find solutions where 

impulsive transfer is not possible. While it takes half an orbit for impulsive transfer 

to be realized, it takes around 3 orbits for LTI NOC solution to complete 

reconfiguration. The total cost, i.e. the maneuvering effort, can be reduced by 

increasing the transfer time, however, it needs to be checked for safety conditions 

(Eq. (59)) continuously. Finally, LTI NOC reconfiguration results in less 

computational demand (as there is no extensive dynamics calculation for prediction 

horizon) and less total ∆V when compared to LTI MPC reconfiguration. 
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In order to introduce the effects of realistic dynamics, the LTI system dynamics, 

𝑓(𝑥𝑘, 𝑢𝑘), in Table 7.6 can be replaced with J2 incorporated relative STM provided 

with Eq. (47). With the use of this STM, the states would become the quasi non-

singular mean relative orbital elements as described in Eq. (46). However, as the 

objective for orbital transfer is the minimization of the relative state error with 

respect to target orbit, the constraint for terminal time instant would be similar to the 

LTI NOC formulation and full constraints can be given as in the Eq. (91). 

𝑥𝑘+1 = ∆𝛼𝑘+1
𝑞𝑛𝑠

= 𝑓(𝑥𝑘, 𝑢𝑘), 

𝑥𝑁+1 = ∆𝛼𝑁+1
𝑞𝑛𝑠 = [0 0 0 0 0 0]𝑇 , 

𝑢𝑚𝑖𝑛 ≤  𝑢𝑘  ≤  𝑢𝑚𝑎𝑥 . 

(91) 

With these, the final formulation for the resulting LTV system NOC is summarized 

in Table 7.8. 

Table 7.8 Orbital Transfer Formulation with LTV System NOC 

Parameter Specification 

Objective Function Minimize Eq. (89) 

Constraint Function(s) Eq. (91) 

System Dynamics Eq. (47), (49) and (50) 

Time Step 60 sec. 

Simulation Duration N =300 steps (~3 orbits) 

Bounds on ∆V Input umin = -0.1 m/sec, umax = 0.1 m/sec 

 

Using these settings, the solution found in Figure 7.3 is recalculated and the resulting 

∆V map is given in Table 7.9. These solutions are all achieved with the satisfaction 

of the constraints with ∆𝛼𝑁+1
𝑞𝑛𝑠 = [0 0 0 0 0 0]𝑇 meaning that spacecraft are 

totally transferred to the target orbit. 
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Table 7.9 ∆V Map for the Reconfiguration of 5 Spacecraft Cluster with LTV NOC 

ΔV 

[m/sec] 

RO1,t1 RO2,t1 RO3,t1 RO4,t1 RO5,t1 

RO1,t0 3.56 8.82 12.56 13.92 19.44 

RO2,t0 11.59 3.06 7.80 9.31 11.61 

RO3,t0 11.74 5.75 2.54 5.52 7.82 

RO4,t0 17.12 8.83 7.81 7.81 7.16 

RO5,t0 4.01 6.30 9.78 11.41 16.60 

 

From the ∆V map given in Table 7.7, minimum total maneuvering effort is obtained 

if the reconfiguration is performed as follows: 𝑅𝑂1,𝑡0 → 𝑅𝑂1,𝑡1, 𝑅𝑂2,𝑡0 → 𝑅𝑂2,𝑡1, 

𝑅𝑂3,𝑡0 → 𝑅𝑂3,𝑡1, 𝑅𝑂4,𝑡0 → 𝑅𝑂5,𝑡1, 𝑅𝑂5,𝑡0 → 𝑅𝑂4,𝑡1. Here, the solution with 

minimum maneuvering effort for the cluster results in 27.73 m/sec of total ∆V. Also, 

the maximum control input is bounded by 0.1 m/sec and the maximum thrust level 

required is still less than 0.04 N for a 100 kg satellite with step size of 60 seconds. 

When OIT and LTV NOC methodologies are compared, it can be observed that the 

LTV NOC still requires more maneuvering effort (about 1.2 times of the impulsive 

transfer requirement) as expected. However, with LTV NOC, it is possible to put 

constraints on control inputs based on thruster limitations and find solutions where 

impulsive transfer is not possible. While it takes half an orbit for impulsive transfer 

to be realized, it takes around 3 orbits for NOC solution to complete reconfiguration. 

The total cost, i.e. the maneuvering effort, can be reduced by increasing the transfer 

time, however, it needs to be checked for safety conditions (Eq. (59)) continuously. 

Finally, LTV NOC reconfiguration results in less computational demand (as there is 

no extensive dynamics calculation for prediction horizon) and less total ∆V when 

compared to LTI MPC reconfiguration. 
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7.4 Evaluation of Reconfiguration Methodologies 

In terms of reconfiguration, several methodologies and dynamics models are applied 

as described in previous chapters. Here, the summary of the results of reconfiguration 

methodologies for 5 spacecraft cluster is given in the Table 7.10. 

Table 7.10 Summary of Reconfiguration Results for 5 Spacecraft Cluster 

Methodology Dynamics Total ∆V [m/sec] Notes 

OIT LTI 23 Transfer is not possible 

for 2 cases 

Impulsive and not 

limited control 

MPC LTI 36.8 All transfer is possible 

with limited control 

Transfer allocation is 

different from OIT 

NOC LTI 29.9 All transfer is possible 

with limited control 

Transfer allocation is 

same as OIT 

NOC LTV 27.7 All transfer is possible 

with limited control 

Transfer allocation is 

same as OIT 

 

Since OIT with LTI system would provide the theoretical minimum ∆V requirement 

and minimum transfer time (half orbit), it can be taken as reference for comparisons. 

First of all, MPC and NOC makes transfer possible between all relative orbits where 

transfer is not possible with OIT. Also, MPC and NOC incorporates control 

constraints while control is not limited for OIT. Secondly, NOC solutions provide 

same reconfiguration order with OIT however transfer allocation is slightly different 

for MPC. Here, the MPC performance can be tuned to provide similar 
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reconfiguration order and ∆V requirements, however, the transfer duration (~3 

orbits) is kept the same for MPC and NOC solutions for comparison reasons. 

Therefore, MPC performance may differ from OIT and NOC solutions for same 

transfer duration with NOC. Finally, as it can be seen from Table 7.10, the NOC with 

LTV provides the closest ∆V requirement to the theoretical minimum case. 

Considering these results, it can be concluded that the use of NOC improves the 

overall solution performance with the existence of control constraints.  

In order to see the real-life implications of these solutions to spacecraft design, the 

propellant budgets are also calculated for a spacecraft with 100 kg mass and with 

liquid monopropellant propulsion system (MPS) whose specific impulse is 200 

seconds. In addition, assuming that the reconfiguration is performed each 3 days, 

122 reconfigurations shall be performed on average per year. The resulting 

propellant budget is summarized in Table 7.11. 

Table 7.11 Propellant Budget for Spacecraft Reconfiguration 

Methodology Total ∆V per 

Reconfigurat

ion [m/sec] 

Average ∆V 

per 

Spacecraft 

[m/sec] 

Average ∆V 

per Year per 

Spacecraft 

[m/sec] 

Average 

Propellant 

per Year per 

Spacecraft 

[kg] 

OIT-LTI 23 4.60 561.20 24.88 

MPC-LTI 36.8 7.36 897.92 36.72 

NOC-LTI 29.9 5.98 729.56 31.05 

NOC-LTV 27.7 5.54 675.88 29.14 

 

As it can be seen from Table 7.11, the total propellant requirement per year just for 

reconfiguration is considerable for a conventional 100 kg class spacecraft.  
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7.5 Sequential Cluster Design and Reconfiguration with Relative Orbit 

Element Differences as Design Variable 

As described in the previous chapter, sequential spacecraft cluster design with 

completely new relative orbital elements results in considerable amount of total 

reconfiguration ∆V and propellant budget even though the objective is minimizing 

it with OIT methodology. Instead of designing completely new relative orbital 

elements, an alternative way is introducing small differences in relative orbital 

elements to the first configuration. In this approach, the differences between the 

relative orbital elements from initial cluster to the next one are directly considered 

as design variables. This is described in Figure 7.8 and new orbital elements of the 

spacecraft in the cluster are calculated using Eq. (92). 

 

Figure 7.8. Implementation of Sequential Cluster Design and Reconfiguration with 

Relative Orbital Differences 

 𝛼𝑙,𝑡1
𝑇𝐿𝐸  = (𝛼𝑟,𝑡1

𝑇𝐿𝐸 +  ∆𝛼𝑙,𝑡0
𝑇𝐿𝐸) + ∆𝛼𝑙,𝑡1

𝑇𝐿𝐸 (92) 

Here, the differences in relative cross track elements, 𝛥𝑖 and 𝛥𝛺 are considered as 

design variables since the along-track elements can be controlled separately for each 

spacecraft. These design variables and their bounds are specified by the Eq. (93). 
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−0.001° ≤ 𝛥𝑖𝑙,𝑡1
𝑇𝐿𝐸 ≤ 0.001°

−0.001° ≤ 𝛥𝛺𝑙,𝑡1
𝑇𝐿𝐸 ≤ 0.001°

 (93) 

In addition, the objective can still be selected as either to maximize station keeping 

or safety while reconfiguration ∆V is minimized for each spacecraft through 

nonlinear optimal control. Based on the previously utilized cluster flying objectives 

and newly introduced design variables, the reconfiguration of 5 spacecraft cluster 

studied in Chapter 7.1 is reformulated in Table 7.12. 

Table 7.12 Reconfiguration Problem with Relative Orbital Element Differences as 

Design Variables 

Parameter Specification 

Objective Function 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑∑
(𝛥𝑅𝑙,𝑗

2 + 𝛥𝑇𝑙,𝑗
2 + 𝛥𝑁𝑙,𝑗

2 )

𝑑𝑚𝑎𝑥
2

𝑇

𝑗=1

𝑁

𝑙=1

 

Constraint Function(s) Eq. (59) 

Bounds on Design Variables Eq. (93) 

Propagator Analytical (SGP4) 

Inputs and Assumptions Reference Orbit SSO, LTDN 10:30 at 

685 km altitude 

Spacecraft Number 5 

𝑑𝑚𝑖𝑛and 𝑑𝑚𝑎𝑥 in 

RTN Plane 

0.1 km and 20 km 

Physical Differences Defined by 𝛥𝛽𝑙
∗ = 0 

Duration, 𝑇𝑚𝑎𝑥 3 days 

Step Size 10 sec 

Sample Number 1000 

 

Based on this formulation, the resulting relative distances for 𝐶2
5 = 10 combinations 

are shown in Figure 7.9. 
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Figure 7.9. Cluster Flying 3 Day-Result for 5 Spacecraft with Relative Orbital 

Element Differences as Design Variable. 

From Figure 7.9, it can be concluded that the 5-spacecraft cluster flying design does 

not violate the minimum and maximum distance constraints of 0.1 km and 20 km 

respectively over 3-day period. The minimum distance occurs as 0.4 km. in RN while 

corresponding RTN distance is 5 km. in the cluster. In addition, the minimum RTN 

distance occurs as 1.39 km. while corresponding RN distance is 1.14 km. Finally, 

the maximum relative distance in the cluster is 16.77 km.  

Finally, the reconfiguration of 5 spacecraft cluster based on the modified relative 

orbital elements of the initial cluster with the formulation given in Table 7.8 results 

in the ∆V requirements which are summarized in Table 7.13. Here, it must be noted 

that the reconfiguration is performed for each spacecraft directly to its modified 

relative orbit without any re-allocation through auction algorithm. 
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Table 7.13 Summary of Reconfiguration Results for 5 Spacecraft Cluster with 

Relative Orbital Element Differences as Design Variable 

Reconfiguration Relative Orbital Element 

Difference: [𝛥𝑖𝑙,𝑡1
𝑇𝐿𝐸 , 𝛥𝛺𝑙,𝑡1

𝑇𝐿𝐸] 

∆V [m/sec] 

𝑅𝑂1,𝑡0 → 𝑅𝑂1,𝑡1 [9.15x10-4, 9.69x10-4] 0.22 

𝑅𝑂2,𝑡0 → 𝑅𝑂2,𝑡1 [7.09x10-4, -1.44x10-4] 0.12 

𝑅𝑂3,𝑡0 → 𝑅𝑂3,𝑡1 [9.72x10-4, -5.96x10-4] 0.14 

𝑅𝑂4,𝑡0 → 𝑅𝑂4,𝑡1 [-9.9x10-4, -8.42x10-4] 0.22 

𝑅𝑂5,𝑡0 → 𝑅𝑂5,𝑡1 [-1.93x10-4, 9.25x10-4] 0.16 

TOTAL  0.86 

 

As it can be seen from this table, the total ∆V requirement is significantly improved 

by considering the relative orbital element differences as design variables. In 

addition, the propellant budgets are also given in Table 7.14 for spacecraft with 100 

kg mass and with MPS whose specific impulse is 200 seconds. 

Table 7.14 Propellant Budget for Spacecraft Reconfiguration with Relative Orbital 

Element Differences as Design Variables 

Reconfiguration Total ∆V per 

Reconfiguration 

[m/sec] 

Total ∆V per 

Year [m/sec] 

Total Propellant 

per Year [kg] 

𝑅𝑂1,𝑡0 → 𝑅𝑂1,𝑡1 0.22 26.84 1.36 

𝑅𝑂2,𝑡0 → 𝑅𝑂2,𝑡1 0.12 14.64 0.74 

𝑅𝑂3,𝑡0 → 𝑅𝑂3,𝑡1 0.14 17.08 0.87 

𝑅𝑂4,𝑡0 → 𝑅𝑂4,𝑡1 0.22 26.84 1.36 

𝑅𝑂5,𝑡0 → 𝑅𝑂5,𝑡1 0.16 19.52 0.99 

TOTAL 0.86 104.92 5.32 
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As it can be seen from the Table 7.14, the total propellant requirement for each 

spacecraft for cluster maintenance is very reasonable. With the overall methodology, 

it is not only possible to keep cluster within distance constraints but also perform 

reconfiguration with reasonable maneuvering effort. 
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CHAPTER 8  

8 CONCLUSION 

In this thesis the problem of long term and safe cluster flying is addressed. To fill the 

gap between the formation flying and swarm missions, cluster flying is introduced 

with relatively loose geometry constraints and control accuracy requirements and 

more spacecraft were considered compared to formation flying which typically 

accommodates two spacecraft (a leader and a follower). In order to support long-

duration semi-autonomous operations of such spacecraft clusters, a set of algorithms 

that enable the long-term station keeping, safety and reconfiguration of distance 

bounded multi-spacecraft clusters under realistic operational considerations are 

proposed. In terms of utilization of such algorithms, safety and availability through 

collision and evaporation avoidance as well as spacecraft physical characteristics, 

capabilities, navigation uncertainties and high-fidelity orbital dynamics are 

considered. The performances of the algorithms are shown and evaluated for 

different cases including design of multi-spacecraft homogeneous and 

heterogeneous clusters with relatively short relative distances as well as designing a 

spaceborne RF Geolocation cluster with long relative distance constraints. In this 

manner, three different problems with maximizing station-keeping or safety 

objective as well as minimizing dilution of precision are studied. While designing 

cluster flying configurations, the space-time boundaries are found and evaluated with 

respect to the derived performance metrics, or objective functions. In the case of 

reconfiguration of a cluster due to limited time validity or feasibility, different 

reconfiguration strategies with different methodologies and dynamics models are 

also studied. These reconfiguration methods, models and implementations are 

compared to find propellant optimum solutions for whole cluster.  
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For several scenarios and mission requirements, the station-keeping objective, 

mission duration and number of spacecraft in the cluster are analyzed and compared 

to evaluate the performance of the proposed cluster flying framework. First of all, 

long term and safe spacecraft clusters can be achieved and their time-space 

boundaries can be found. However, it is found that the number of feasible solutions 

varies with respect to cluster flying duration and number of spacecraft in the cluster. 

These two parameters are conflicting therefore an optimum choice has to be made 

by the mission designer. In this manner, it is observed that number of solutions 

exponentially decrease with increasing cluster flying duration and/or the number of 

spacecraft in the cluster. It is also observed that it is more likely to find solutions and 

optimize for homogeneous or heterogeneous clusters with 3 to 6 spacecraft for 

maximum distance constraints from 15 km. up to 50 km.. As it is expected, the cost 

function for station-keeping also increases exponentially with increasing cluster 

flying duration and/or the number of spacecraft in the cluster. In the case of safety, 

probability of collision is considered as a performance metric. It is found out that, 

maximum probability of collision within a cluster of 5 spacecraft may reach 

considerable levels (~0.001) if navigation uncertainties are moderate. However, this 

still depends on the operator’s acceptable risk level decision based on the 

availabilities and capabilities. For instance, maximum probability of collision within 

a cluster of 5 spacecraft becomes ignorable if the navigation uncertainties are 

relatively low. If cluster design is performed for a specific mission, a specific 

performance measure and relative distance constraints can be also considered. This 

is also shown for a design of RF Geolocation cluster for which a specific cost 

function based on dilution of precision is developed. In addition, several 

configurations with 3 or 4 spacecraft are found and solution performances are 

evaluated. It is found that the algorithm is able to find optimum solution which does 

not vary over mission duration. However, the number of feasible solutions still 

decreases with increasing mission duration. Finally, two methodologies are 

considered for reconfiguration by utilizing sequential design of cluster 

configurations or by using relative orbital element differences as design variables. 
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Utilization of different dynamics models and optimal control methodologies are also 

considered, evaluated and compared. Based on the simulation results, nonlinear 

optimal control with linear time varying dynamics models requires the minimum 

maneuvering effort in the existence of control constraints. Also, utilizing cross-track 

relative orbital element differences as design variables significantly improves the 

maneuvering requirement for the cluster when compared to sequential design and 

reconfiguration of spacecraft clusters. 

Within the proposed cluster flying framework, several original contributions are 

achieved. Firstly, a high-fidelity orbit propagation for cluster flying design is utilized 

which is a vital asset for real-life operational analysis. Secondly, heterogeneous 

systems with different physical parameters are considered to incorporate various 

types of spacecraft where cooperation of different space assets is required in the case 

of fractionated spacecraft architectures. Thirdly, the developed cluster flying design 

methodology supports time validity assessment which is an important capability for 

both design and operational analyses of distributed space systems. In addition, 

algorithms for identifying general time-space boundaries with less computational 

demand are also a part of this development. In terms of cluster flying design, safety 

as an objective through minimizing probability of collision is considered for the first 

time. Finally, reconfiguration algorithm that supports cluster’s time-space validity 

through sequential design of clusters and propellant optimal reconfiguration in the 

case of violation of a safety and/or distance constraints is also proposed.  

With this developed cluster flying design methodology and framework, it becomes 

possible to assess what type of clusters are operationally possible or not for a given 

set of parameters regarding constraints, availabilities, capabilities, physical 

characteristics, navigation uncertainties and mission requirements. In this manner, 

the framework is a powerful design and operational analysis tool for maximizing the 

feasibility and mission return of such cluster missions. Different types of clusters 

with different mission requirements can be designed and evaluated with reasonable 

or small computational demand for long term uninterrupted service and safety in all 

phases of distributed space missions. 
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In terms of future work, several improvements can be considered for the developed 

methodologies in this thesis. First of all, SGP4 is a very powerful model for 

analytical orbit propagation and it makes use of specific mean orbital elements called 

TLEs. However, the accuracy of this model is limited and the performance can be 

improved by studying specific analytical models associated with specific mean 

orbital elements. This may become especially important for missions demanding 

very short relative distances. Secondly, the uncertainty propagation is 

computationally demanding and therefore the cluster flying design with safety 

objective through probability of collision may become not practical for mission 

designer. Therefore, incorporation of computationally effective risk indicators for 

conjunction events can be studied further and assessed for cluster flying design. In 

addition, use of machine learning techniques for covariance or conjunction 

predictions can be evaluated. Thirdly, model predictive control technique can be 

improved and implemented for the reconfiguration incorporating time varying 

systems. Also, the utilization of solar sail or differential drag for the reconfiguration 

problem is very interesting to harness natural dynamics and therefor minimize the 

propellant requirements.  Finally, finding cluster flying solutions considering 

Bellmann principle of optimality for whole mission lifetime can be interesting to 

achieve globally optimum solutions which may improve the “working” sub-optimal 

solutions. 
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APPENDICES 

A. Two-Impulse Optimal Transfer 

In this annex, the technical notes by (Eagle, 2021) for the implementation of two-

impulse optimal transfer between non-coplanar circular and elliptical orbits which is 

utilized in Chapter 7.1 are provided for reference.  

The formulation of the two-impulse optimal transfer is based on a reference 

coordinate system whose fundamental reference plane is the final orbit plane and the 

x-axis is aligned with the intersection of the planes of initial and final orbits. The z-

axis of the system is aligned with the angular momentum vector of the final orbit and 

the y-axis completes this orthogonal coordinate system. The geometry of the two 

impulse orbital transfer is provided in Figure A.1. 

 

Figure A.1. The geometry of two-impulse optimal transfer between non-coplanar 

circular and elliptical orbits. (Eagle, 2021) 
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In Figure A.1, 𝑖𝑟 represents the relative inclination between the initial and final orbit 

planes, ∆𝜃 is the is the transfer angle which is the angle from the first and second 

impulse measured in the plane of the transfer orbit. N is in the direction of the x-axis, 

W1 is in the direction of the initial orbit angular momentum vector, and W2 is in the 

direction of the angular momentum vector of the final orbit. 

The independent variables for this problem are 𝜙1, 𝜙2 and 𝑝𝑡 , where 𝜙1 is the angle 

from the N axis to the first impulse as measured in the initial orbit plane, 𝜙2 is the 

angle from the N axis to the second impulse as measured in the final orbit plane, and 

𝑝𝑡 is the semi-parameter of the transfer orbit. The expression for N is provided in the  

𝑁 =
𝑊1 × 𝑊2

|𝑊1 × 𝑊2|
 (94) 

where 𝑊1 = [0 − sin 𝑖𝑟 cos 𝑖𝑟]
𝑇 and 𝑊1 = [0 0 1]𝑇. Here the relative 

inclination 𝑖𝑟 is determined from 

𝑖𝑟 = cos−1(𝑤1 ⋅ 𝑤2) (95) 

where 𝑤𝑘 (𝑘 is 1 or 2) is the ECI unit angular momentum vector of the initial orbit 

given by 

𝑤𝑘 = [
sinΩ𝑘 sin 𝑖𝑘

−cosΩ𝑘 sin 𝑖𝑘
cos 𝑖𝑘

] (96) 

The unit position vector at the first impulse in the reference coordinate system is 

𝑈1 = [

cos𝜙1

sin𝜙1 cos 𝑖𝑟
sin 𝜙1 sin 𝑖𝑟

] (97) 

and the unit position vector of the second impulse, also in the reference coordinate 

system, is determined from  

𝑈2 = [
cos𝜙2

sin𝜙2

0

] (98) 
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The transfer angle can be computed from the following dot product 

∆𝜃 = cos−1(𝑈1 ⋅ 𝑈2) (99) 

The minimum and maximum bounds on the semi-parameter of the transfer orbit can 

be determined from the following two expressions 

𝑝𝑚𝑖𝑛 =
𝑟1𝑟2 − 𝒓𝟏 ⋅ 𝒓𝟐

𝑟1 + 𝑟2 + √2(𝑟1𝑟2 + 𝒓𝟏 ⋅ 𝒓𝟐)
 

𝑝𝑚𝑎𝑥 =
𝑟1𝑟2 − 𝒓𝟏 ⋅ 𝒓𝟐

𝑟1 + 𝑟2 − √2(𝑟1𝑟2 + 𝒓𝟏 ⋅ 𝒓𝟐)
 

(100) 

The partial derivative of the total required ∆𝑉 with respect to the semi-parameter of 

the transfer orbit is as follows 

𝜕𝑉𝑡

𝜕𝑝𝑡
=

1

2𝑝𝑡
(
∆𝑽𝟏 ⋅ (𝑽 − 𝑧𝑼𝟏)

|∆𝑽𝟏|
−

∆𝑽𝟐 ⋅ (𝑽 + 𝑧𝑼𝟐)

|∆𝑽𝟐|
) (101) 

Part of the optimal orbital transfer solution involves finding the value of 𝑝𝑡 which 

lies between 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥 which makes this partial derivative expression equal to 

zero. 

The ∆𝑽 vectors in the reference coordinate system are given by the following two 

expressions 

∆𝑽𝟏 = ∓(𝑽 + 𝑧𝑼𝟏) − 𝑽𝟏 

∆𝑽𝟐 = 𝑽𝟐 ∓ (𝑽 − 𝑧𝑼𝟐) 
(102) 

where the upper sign in these two equations corresponds to the short transfer and 

𝑧 = √
𝜇

𝑝
tan

∆𝜃

2
 (103) 

with 

𝑽 = √𝜇𝑝𝑡 
(𝒓𝟐 − 𝒓𝟏)

|𝒓𝟏 × 𝒓𝟐|
 (104) 

The velocity vector of the satellite prior to the first (𝑘 = 1) or second (𝑘 = 2) 

impulse with respect to the reference coordinate system is calculated from 
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𝑽𝒌 = √
𝜇

𝑝𝑘
𝑾𝒌 × (𝒆𝒌 + 𝑼𝒌) (105) 

In these expressions, 𝒆𝟏 is the reference coordinate system eccentricity vector of the 

initial orbit which is given by 

𝒆𝟏 = 𝑒1[cos𝜔1 sin𝜔1 cos 𝑖𝑟 sin𝜔1 sin 𝑖𝑟]
𝑇 (106) 

and 𝒆𝟐  is the eccentricity of the final orbit defined by 

𝒆𝟐 = 𝑒2[cos𝜔2 sin𝜔2 0]𝑇 (107) 

where 𝑒1 and 𝑒2 are the scalar eccentricity of the initial and final orbits, respectively. 

The total scalar delta-v required for the orbit transfer is given by ∆𝑉 = |∆𝑽𝟏| +

|∆𝑽𝟐|. The objective is to minimize this scalar quantity of ∆𝑉 which can be described 

by the ECI components of the two as follows: 

∆𝑉 = √∆𝑉1𝑥
2 + ∆𝑉1𝑦

2 + ∆𝑉1𝑧
2 + √∆𝑉2𝑥

2 + ∆𝑉2𝑦
2 + ∆𝑉2𝑧

2  (108) 

Here, to convert from reference coordinate system solution to ECI vectors, the 

transformation matrix 𝛽𝑟𝑐𝑠
𝐸𝐶𝐼 can be written as follows: 

𝛽𝑟𝑐𝑠
𝐸𝐶𝐼

= [

cosΩ2 cos ∅ − sin Ω2 cos 𝑖2 sin ∅ − cosΩ2 sin ∅ − sin Ω2 cos 𝑖2 cos ∅ sinΩ2 cos 𝑖2
sinΩ2 cos ∅ + cosΩ2 cos 𝑖2 sin ∅ − sinΩ2 sin ∅ + cosΩ2 cos 𝑖2 cos ∅ −cosΩ2 sin 𝑖2

sin 𝑖2 sin ∅ sin 𝑖2 cos ∅ cos 𝑖2

] 
(109) 

where  

∅ = cos−1(𝑵 ⋅ 𝑼) 𝑠𝑖𝑔𝑛(𝑁𝑧) (110) 

and 

𝑼 = [cosΩ2 sinΩ2 0]𝑇 (111) 

The position vector of the initial and transfer orbits at the first impulse (𝑘 = 1) and 

the position vector of the transfer and final orbit at the second impulse (𝑘 = 2) in the 

reference coordinate system is 
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𝒓𝒌 = (
𝑝𝑘

1 + 𝑒𝑘 cos(𝜙𝑘 − 𝜔𝑘)
) (112) 

In these equations the arguments of perigee 𝜔1 and 𝜔2 are with respect to the 

reference coordinate system. They can be determined with the following three 

equations 

𝜔𝑟𝑐𝑠 = 𝛽𝑟𝑐𝑠
𝐸𝐶𝐼𝜔𝐸𝐶𝐼 

𝜔1 = cos−1 𝜔𝑥 

𝜔2 = tan−1(𝜔𝑦, 𝜔𝑧) 

(113) 

where the inverse tangent calculation here is a four-quadrant operation. Then the ECI 

argument of perigee vectors (𝑘 = 1,2) at each impulse are given by 

𝜔𝐸𝐶𝐼,𝑘 = [
cos𝜔𝑘 cos Ω𝑘 − sin𝜔𝑘 sinΩ𝑘 cos 𝑖𝑘
cos𝜔𝑘 sinΩ𝑘 + sin𝜔𝑘 cosΩ𝑘 cos 𝑖𝑘

sin𝜔𝑘 sin 𝑖𝑘

] (114) 

where all the orbital elements in these two equations are with respect to the ECI. 

The semi-parameter of the initial (𝑘 = 1) and final (𝑘 =2) orbit can be determined 

from 

𝑝𝑘 = 𝑎𝑘(1 − 𝑒𝑘
2) (115) 

where 𝑎𝑘 is the semi-major axes of the initial and final orbits. 

The transfer orbit velocity vectors prior to the first and second impulses in the 

reference coordinate system are calculated from the next two equations 

𝑽𝒕𝟏 = 𝑽 + 𝑧𝑼𝟏, 𝑽𝒕𝟐 = 𝑽 − 𝑧𝑼𝟐 (116) 

The transfer orbit position and velocity vectors can be transformed into the ECI 

coordinate system using the transpose of the 𝛽𝑟𝑐𝑠
𝐸𝐶𝐼 matrix as described above, and 

then converted to classical orbital elements. 
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